EUROPE'S MOST COMPREHENSIVE ADDITIVE MANUFACTURING (AM) CURRICULUM LAUNCHED

Prepared by more than 20 AM experts

Personalized Learning by Level of Individual

Three Level Certification as Beginner, Intermediate & Advanced

More than 50 Hours Videos, Presentations and Exams

Click on addressforfuture.myenocta.com

ADDITIVE MANUFACTURING FOR BEGINNERS

Overview on AM Processes

Z

Z

RAI

ш

0

Z

ш

0

O

Advantages and Manufacturing Constraints

Polimer Application Metal Constraint Design for Additive Analysis Based Design

Biomimetic Design Approach

Classification of AM Processes

Polymer Basic Principles

Metal Basic Principle Metal Application Design for Additive Design Optimization and Topology Main Concepts on the Whole Process Planning Chain (Slicing, Path -Planning, Platform Optimization, Support Generation,

Machine Code

Generation)

The ASTM / ISO / NADCAP Classification of Additive Manufacturing Technologies

Polymer Material Knowledge Metal Metarial Knowledge Design for Additive Main Concepts and Objectives Design for Additive Shape Complexity

Complexity

Use of Common AM Software (Cura, Magics, Etc.)

Main Characteristics

Polymer Constraints Metal Powder Metallurgy Design for Additive 3D Modelling

Design for Additive DFAM Rules

Click on

ADDITIVE MANUFACTURING FOR INTERMEDIATE LEVEL

Introduction to **DFAM Module**

Z

Z

4

ď

Į. 0

ш

Z 0 **Workflow of Topology** Optimization

> Mechanical/functional / Thermal-Fluid

Design for

Optimized/targeted

Process Parameters

Computerized Tomography (CT)

Generative Design

Part Orientation

Mechanical **Testing Methods**

Computer Aided Design Tools for AM **Biomimetic Design**

Case Analysis of Representative

Dynamic Performance

Targeted Mechanical / Functional Performance

Support Genaration

Microstructural **Analysis**

Reverse Engineering In AM

Scaning Strategies

Scanning Electron Microscope (SEM)

Introduction to

Design Rules for AM Processes

Project Guideline

Representative **Targeted Thermal-Fluid** Design for AM Project / **Dynamic Performance**

Case Analysis of

Process Planning

Process Parameter Control

Topology Optimization

Introduction to Performance - oriented Design & Analysis of Additively Manufactured Components

Step-by-Step Design of Representative **Cases Oriented to Project Presentation** **Geometrical Dimensions** & Tolerances (GD&T)

Non-destructive **Testing Methods** Click on

-E- 3-)

ADDITIVE MANUFACTURING FOR ADVANCE LEVEL

Introduction to Numerical Simulation of **AM Processes**

Numerical Tools for the Integrated Simulation of Full Scale Components Consolidation by AM

Surface Enhancements Methods (Plastic Deformation)

Cost Analysis Modelling

Hybrid AM

FGM and Smart

Matarials

Waam in Construction: **General Aspects**

Z Thermal, Mechanical 4 œ

ш O

ш

Z

O

Step-by-Step **Simulation Analysis** of Representative **Cases Oriented to**

Heat Treatment Support Removal and Finishing

III Well **Structured Costs**

Sustainability

in AM

Enviromental and Socia Implications

Waam in Construction: Charcaterization of **Metal 3D Printed Elements**

and Microstructural **Modeling of AM Processes**

Project Presentation

Historical Development of Standards

Illustrative Example

Practical Application Theoretical

Waam for Large-Scale **Structures: Fabrication**

Numerical Tools for the **Specific Simulation of Phase-Change Processes in AM**

Surface Enhancements Methods (General Considerations) Standardisation Bodies & Technical Committees

Qualification

Certification

Al in AM

Module Organization & Contributions

Waam in Construction: **Combining Waam With** Other Construction Materials

Review of **Micro-Nonao Printing AM Standards**

Interdisciplinary **Approach**

> Comparative LCA Assessment

Bioprinting

Metal 3D Printing in Construction An Overview of its Role in Structural Engineering

Design

Numerical Tools for the Specific Simulation of Single Tracks Consolidation by AM

Surface Enhancements Methods (Subtractive **Enhancement Method)**

Role of Standards in **AM Processes**

4D Printing

Fabrication & Testing

Click on

AM INDUSTRY

F TRAINING

0

Z

0

Testing Entrepreneurship Features, Business Idea Activity
Description (Including Profile of Participants Per
Organisation, Goals and Results of the Activity)
Development and Creativity Exercises

(an Introduction to Entrepreneurship)

The Concept of Business Plan and Its Components (Market Research, Marketing Plan, Production Plan, Management Plan, Financial Plan) (Business Plan and Its Components)

Workshops to Reinforce Business Plan Elements (Market Research, Marketing Plan, Production Plan, Management Plan, Financial Plan)

Issues to be Considered in Writing and Presenting The Business Plan Entrepreneurial Person Profiles and Evaluating Opportunities

Business Model and Enterprise Strategies Technology & Innovation Management

Enterprise
Finance &
Financial
Management

AM-Themed Entrepreneurship Examples & Hands-on Learning Contents

Click on

