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1. ELECTRICAL FIELDS AND POTENTIALS IN THE PLATE

CAPACITOR
Equipment : Plate capacitor, electric field meter, 0-600V DC power supply, digital 

multimeters 

Purpose :  To investigate the relationship between voltage and electric field strength,

with a constant plate spacing.

 To investigate the relationship between electric field strength and plate

spacing, with a constant voltage.

1.1. Experimental Principle 

Maxwell’s equations for the electric field E in the plate capacitor are as below: 

Δ⃗⃗ × 𝐸⃗ = −𝐵⃗ 

Δ⃗⃗ ∙ 𝐷⃗⃗ = 𝜌 

For the steady-state case in the charge-free space between the plates, Maxwell’s equations could be 

written as: 

𝛥 × 𝐸⃗ = 0 (1) 

𝛥 ∙ 𝐷⃗⃗ = 0  (2)

If one plate is placed in the yz plane and the other parallel to it at a distance of d, and if boundary 

disturbances due to the finite extent of the plates are disregarded, it follows from Eq.2 that E


 lies in the 

x direction and is uniform. Since the field is irrotational (rot E


= 0) it can be represented as the gradient 

of a scalar field φ: 

x
E




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
grad



while E


, because of its uniformity, may also be expressed as the quotient of differences 

d

U

xx
E 






21

21 
(3) 

where the potential difference is equal to the applied voltage U and d is the distance between the plates. 

In Fig.1.1, it shows that electric field strength as a function of the plate voltage. As shown in Fig.1, with 

constant spacing d, E is proportional to the voltage 

With a constant voltage U, the field strength E varies in reverse proportion to the spacing d between the 

plates. The electric field strength as a function of the plate spacing is shown in Fig.1.2. 
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Figure 1.1. Electric field strength as a function 

of the plate voltage. 

Figure 1.2. Electric field strength as a function 

of the plate spacing 

If the measured values are plotted on a log-log scale (Fig.1.3), then because 

log 𝐸 = log
𝑈

𝑑
= log𝑈 − log 𝑑

a straight line is obtained. 

Figure 1.3. The plot of log E-log d 
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1.2. Experimental Procedure 

1. The experimental set up is as shown in Fig.1.4. The electric field meter should first be zero-

balanced with a voltage of 0 V.

2. Measure the electric field strength for plate voltages in Table 1.1 at plate spacing of

d=10 cm and record them

Figure 1.4. Experimental setup 

3. Adjust the plate voltage to 200 V.

4. Measure the electric field strength as a function of the distance between the two capacitor

plates and record them in Table 1.2.

5. Draw graph of both measured values and calculate the error.

Table 1.1. Table 1.2. 

Plate Voltage (V) E (kV/m) 

20 

40 

60 

80 

100 

120 

140 

160 

180 

200 

Plate Spacing (cm) E (kV/m) 

2 

4 

6 

8 

10 

12 
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2. FREQUENCY OF ALTERNATING CURRENT
Equipment : Power supply with output of 10-15 V, ammeter (max 2 A), rheostat, thin wire 

of 1 m length with known mass, wooden wedges to fasten the wire, pulley, pan, 

various masses, magnet (U shape) 

Purpose : Measuring the frequency of alternating current using standing wave method 

2.1. Experimental Principle 

When a conducting wire carrying an electric current i is placed in a magnetic field B, the magnetic force 

on infinitesimal segment of the wire dL is written as: 

𝑑𝐹 = 𝑖𝑑𝐿⃗  × 𝐵⃗ (1) 

In the case of a straight wire and a uniform magnetic field the force becomes: 

𝐹 = 𝑖 𝐵 𝐿 𝑠𝑖𝑛𝜃 (2) 

where 𝜃 is the angle between the wire and the magnetic field. An alternating current causes an alternating 

force on the wire and the frequency of the force is equal to the alternating current frequency. If we 

measure the frequency of this force with an appropriate experimental setup, then we measure the 

frequency of the alternating current.  

The experimental setup is shown in Fig.2.1. One end of the wire (length of L) is attached to the point 

A while the other end is connected to a pan by passing the wire over the right wedge and a fixed 

pulley on the point B. Various masses are put on the pan to change the tension of the wire with 

different forces. The U magnet is placed at L/2 and the wire is laid between the poles of the magnet. 

The wire is connected to a rheostat and the output of an AC power supply and an ammeter at the 

points A and B, respectively. 

Figure 2.1. Experimental setup 

The influence of the magnetic force leads the wire to start vibrating up and down. If the frequency of 

the magnetic force (frequency of the alternating current) equals to the neutral frequency of the wire then, 

the wire begins to vibrate with the highest amplitude (resonance situation). The masses are used to 

ensure this condition.   

In the resonance situation, a standing wave is seen on the wire which causes nodes on A and B points 

and an antinode in the middle of the wire. In this case the length of the wire between A and B points (L) 

can be written in terms of the wave length of the standing wave (𝜆): 

𝐿 =
𝜆

2
(3) 

On the other hand the speed of propagation (𝜐) of the transverse wave vibrations on the wire is: 
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𝜐 = 𝜆 𝑓 (4) 

here f represents the frequency of the vibration. This speed can also be given in terms of the force 

stretching the wire (P) and length density (𝜇) of the wire: 

𝜈 = √
𝑃

𝜇
(5) 

Finally, using equations (3), (4), and (5), the vibration frequency f is obtained as: 

𝑓 =
1

2𝐿
√

𝑃

𝜇
(6) 

Thus, the frequency of the alternating current, equals to the vibration frequency, can be measured with 

known L, P and 𝜇. 
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2.2. Experimental Procedure 

1. Set the experiment up as shown on the Fig.2.1.

2. Apply a current between 0-1 A by turning the power supply on.

3. See a standing wave on the wire by changing the weight on the pan. You should see nodes

at A and B points and an antinode in the middle of the wire.

4. Continue to increase gradually the total mass on the pan and observe the amplitude of the

vibration.

5. When you reached maximum amplitude (resonance situation) stop increasing the mass.

6. Turn the power supply off, find the total weight by measuring the mass of the pan and

masses that you used (P = mg). Measure the length of the wire (L) located between A and

B points.

7. Take a sample from the wire and measure the length and mass of the sample. Find the length

density of the wire (μ) by dividing the mass by the length of the wire.

8. Substitute these values in Eq.6 to calculate the frequency.

9. Calculate the error on the derived frequency.
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3. MEASUREMENT OF THE FORCE ACTING ON A CURRENT-

CARRYING WIRE
Equipment : Digital balance, current supply, current loops with different lengths, a set of 

swing coils, 2 magnet assemblies, lab stand and stick, connecting cables. 

Purpose : To observe the force acting a current (I)-carrying wire located in a homogeneous 

and static magnetic field 𝐵⃗  and to explore the magnetic force how it varies with 

length of wire L and current I. 

3.1. Experimental Principle 

A current-carrying wire in a magnetic field experiences a force that is usually referred to as a magnetic 

force. This magnetic force on a current carrying wire is described by Lorentz equation 

𝐹 = 𝐼𝐿⃗ × 𝐵⃗ 

where 𝐿⃗  is a vector that points in the direction of the current with a magnitude equals to the length of 

the wire, 𝐵⃗  is the strength of the magnetic field and, I is the magnitude of the current.  

Figure 3.1. A current-carrying wire placed in a magnetic field 

The magnitude of the force is given as 

𝐹 = 𝐼𝐿𝐵𝑠𝑖𝑛𝜃 

where θ is the angle between 𝐿⃗  and 𝐵⃗  as shown in Fig.3.1. 

If the magnetic field is assumed to be perpendicular to the direction of current flow, equation in scaler 

terms will be simplified to 

𝐹 = 𝐼𝐿𝐵 

Current will flow through the already prepared (prefabricated) current loops shown in Fig.3.2. L is the 

horizontal length of the wire passes through the pole region of the magnet, referred as test length. This 

length can be changed from 1 to 7 units and each unit nearly has 1 cm length. Test lengths used in the 

experiment should be recorded. Current loops will connect to a direct-current supply which has an 

ammeter. If the magnetic field is assumed to be as shown in Fig.3.2 (going into the page), the 

direction of the current flow should be as shown in the figure to create the force in the direction 

intended. 

𝐿⃗ 

𝐹  

𝐵⃗ 

I 
θ 
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Figure 3.2. Current loop with connection points (a) front view, (b) rear view 

Table 3.1. Various wire lengths.of the current loop. 

Current loop Test length L 

AB or BC 1 unit 

AC or CE 2 unit 

BE or ED 3 unit 

AE 4 unit 

CD 5 unit 

BD 6 unit 

AD 7 unit 
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3.2. Experimental Procedure 

NOTE: Current loop should not exceed 5 A current. 

3.2.1. Magnetic force as function of current 

1. Place the magnet assembly with spaced 5 mm on the balance.

2. Select the current loop which has the longest L and record this length.

3. Plug the current circuit, which includes the current loops, into the ends of the Main 
Unit, with the foil extending down as shown in Fig.3.3.

Figure 3.3. Setup of Current Balance (side view) 

4. Place the horizontal portion of the current circuit so that it passes through the pole

region of the magnets as shown below. Make sure that the plane of the current circuit

is parallel to the magnet group and do not touch to it. If it is required, set the highness

of the Main Unit.

5. Push the tare button of the digital balance in absence of current in the circuit and see

the 0.00 g on the display.

6. Connect current supply to the circuit (see Fig.3.4)

Figure 3.4. Top view of Main Unit and connection current supply to Main Unit 

7. Increase current in 0.5 A increments up to 5.0 A. Read the new mass of the magnet 
group for each current value from digital balance. If the current increasing decreases 
the mass, thus the direction of current within the magnetic field is not as shown in 
Fig.3.2. In this case, reverse the connections on the Main Unit.

8. Fill Table 3.2 using the current values and the mass values as a function of current.

9. Calculate magnetic forces F multiplying the mass values by g=9.81 m/s2 and write these 
into Table 3.2.

10. Plot the magnetic force (F) as a function of the current (I).

11. Draw an optimum line over the experimental dots and calculate the slope of the line.

12. The slope of the line corresponds to L∙B as seen in Eq.2 (vector multiplication the length

of wire passing the current with the magnetic field).

13. Find power of the magnetic field produced by magnet using the slope of the line.

Main Unit 

Current Loop 

Magnet Assembly 

Balance 

Current supply 
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Table 3.2 

Current (A) Measured Mass (g) Magnetic Force 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

4.5 

5 

3.2.2. Magnetic force as a function of the length of wire 

1. Set the current to 0 keeping the experimental setup before.

2. Connect the current circuit to Main Unit setting to the shortest length of wire.

3. Read 0.00 g on display pushing “tare” button of the digital balance.

4. Adjust the current 3 A, record the value on the display of the balance.

5. Set the current to 0 and disconnect the current supply from Main Unit.

6. Repeat the steps 3, 4 and 5 for different lengths of wire.

7. Fill Table 3.3 using the lengths of wire and the corresponding mass values.

8. Calculate the magnetic forces F multiplying the mass values by g=9.81 m/s2 and write 
these into Table 3.3.

9. Plot the magnetic force (F) as a function of the length of wire (L).

10. Find the optimum slope of line.

11. The slope of this line equals to the multiplication of I∙B (as seen in Eq.2). This is vector 
multiplication the current with magnetic field force. Find power of the magnetic field 
produced by magnet using the slope of line. Compare this value with the value, which 
obtained in Section 3.2.1.
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Table 3.3 

Current (A) Length Measured Mass (g) Magnetic Force 

AB or BC 1 unit 

AC or CE 2 unit 

BE or ED 3 unit 

AE 4 unit 

CD 5 unit 

BD 6 unit 

AD 7 unit 

11



4. OHM’S LAW

Equipment : Resistors, ammeter, power source, banana cables, graph paper 

Purpose : To verify Ohm’s Law experimentally and determine unknown resistor values 

4.1. Experimental Principle 

When a voltage or potential difference (V) is applied across a material, the current (I) in the material is 

found to be proportional to the voltage, IV. The resistance (R) of the material is defined as the ratio 

of the applied voltage and the resulting current—that is, 

I

V
R  (1) 

For many materials, the resistance is constant, or at least approximately so, over a range of voltages. A 

resistor that has constant resistance is said to obey Ohm’s law or to be “ohmic.” From Eq.1, it can be 

seen that the unit of resistance is the volt/ampere (V/A). However, the combined unit is called the ohm 

(Ω), in honor of Georg Ohm (1787–1854), a German physicist, who developed this relationship known 

as Ohm’s law. Note that to avoid confusion with a zero; the ohm is abbreviated with a capital omega 

(Ω) instead of a capital O. A plot of V versus I for an ohmic resistance is a straight line (Fig.4.1). 

Materials that do not obey Ohm’s law are said to be “nonohmic” and have a nonlinear voltage-current 

relationship. Semiconductors and transistors are nonohmic. 

V
ol

ta
g

e

Current

Sl
op

e=
R

Figure 4.1 A voltage-versus-current graph for an ohmic resistance is a straight line, the slope of which is equal to the value 
of the resistance (R = V/I). 

In common practice, Ohm’s law is written as 

IRV  (2) 

where it is understood that R is independent of V. Keep in mind that Ohm’s law is not a fundamental 

law such as Newton’s law of gravitation. It is a special case, there being no law that materials must 

have constant resistance. 

4.1.1. Resistances in Parallel 

The current in a parallel circuit (Fig.4.2) divides among the resistors such that 

21 III  (3) 

R1

R2

I
I1

I2

+ -

Figure 4.2 Resistors in parallel 
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The current through each resistor is given by Ohm’s law (for example, I1=V/R1), and Eq.3 may be 

written as 













2121

21

11

RR
V

R

V

R

V
III (4) 

An equivalent resistance (Rp) can replace the parallel resistances in the circuit in Fig.4.2. This 

equivalent circuit would be as in Fig.4.3. 

Rp

I

V

Figure 4.3 Equivalent circuit of Fig.2 

According to the Ohm’s Law, total current must be equal to 

pR

V
I  (5) 

Substituting Eq.5 in Eq.4, equivalent resistance for the resistances in parallel get as 

21

111

RRRp

 (6) 

4.1.2. Resistances in Series

Resistors are said to be connected in series when connected as in Fig.4.4 (The resistors are connected 

in line, or “head to tail” so to speak, although there is no distinction between the connecting ends of a 

resistor). 

R1

I

V

R2

V1 V2

Figure 4.4 Resistors in series 

Total voltage V in Fig.4.4 must be equal to sum of voltages on each resistor: 

21 VVV  (7) 

Same current I pass through each resistor in series circuit. So, Eq.7 can be written as 

)( 2121 RRIIRIRV   (8) 

An equivalent circuit as in Fig.4.5 can be replaced by Fig.4.4. 
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Rs

I

V

Figure 4.5 Equivalent circuit of Fig.4 

According to this, total voltage and equivalent resistance of the resistors in series can be written as, 

)( 21 RRIIR

IRV

s

s




(9) 

and 

21 RRRs  (10) 

4.2. Experimental Procedure 

1. Set the circuit up for resistor R1 given in Fig.4.6. (“A” denotes ammeter)

V

R

A

V

Figure 4.6 Experimental setup for R1 and R2 

2. Adjust the voltage values using power source knob and measure the corresponding current

values for each voltage (Record data in Table 4.1).

Table 4.1

Readings Voltage (V) Current (mA) 

1 

2 

3 

4 

5 

6 

3. Plot voltage versus current graph and calculate its slope. The slope gives you R1 value. (Place

voltages values on vertical axes and current values on horizontal axes and DO NOT forget to

convert mA to A)
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4. Set the circuit up for resistor R2 given in Fig.4.6.

5. Adjust the voltage values using power source knob and measure the corresponding current

values for each voltage (Record data in Table 4.2).

Table 4.2

Readings Voltage (V) Current (mA) 

1 

2 

3 

4 

5 

6 

6. Plot voltage versus current graph and calculate its slope. The slope gives you R2 value.

7. Set the circuit up for resistors in parallel given in Fig.4.7.

V

R1

A

V

R
2

Figure 4.7 Experimental setup for resistors in parallel 

8. Adjust the voltage values using power source knob and measure the corresponding current

values for each voltage (Record data in Table 4.3).

Table 4.3.

Readings Voltage (V) Current (mA) 

1 

2 

3 

4 

5 

6 

9. Plot voltage versus current graph and calculate its slope. The slope gives you Rp value.

10. Set the circuit up for resistors in series given in Fig.4.8.
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R1

V

R2

A

V

Figure 4.8 Experimental setup for resistors in series 

11. Adjust the voltage values using power source knob and measure the corresponding current

values for each voltage (Record data in Table 4.4).

Table 4.4

Readings Voltage (V) Current (mA) 

1 

2 

3 

4 

5 

6 

12. Plot voltage versus current graph and calculate its slope. The slope gives you Rs value.

13. Calculate Rp and Rs values using Eq.6 and Eq.10, respectively and compare them with the

values, which are obtained from the slopes of the graphs in steps 9 and 12.

4.3. Results 

R1 (Ω) R2 (Ω) 
Rp (Ω) Rs (Ω) 

From slope From Eq.6 From slope From Eq.10 
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5. DETERMINATION OF CAPACITANCE IN AC CIRCUITS
Equipment : Voltmeter, ammeter, rheostat, lamp, capacitor 

Purpose : To Determine the capacitance of a capacitor (C), observing the phase shift 

between the current and the voltage on the capacitor 

5.1. Experimental Principle

As shown in Fig.5.1, in a circuit consisting of a resistor (R), inductor (L) and capacitor (C) in series with

an AC power supply, the current equals to 

𝐼 =
𝑉

𝑍

Figure 5.1.

where 𝑍 = √𝑅2 + 𝑋2 represents the impedance, 𝑋 = 𝑋𝐿 − 𝑋𝐶 represents the reactance, 𝑋𝐿 = 2𝜋𝑓𝐿
represents the inductive reactance, 𝑋𝐶 = 1/(2𝜋𝑓𝐶) represents the capacitive reactance. The phase shift

between the current and the voltage is 

𝜙 = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑋

𝑅

If there are only capacitor in the circuit (𝑅 = 0 and 𝑍 = 𝑋𝐶), the potential difference between capacitor

terminals is 

𝑉𝐶 = 𝐼𝑋𝐶 =
𝐼

2𝜋𝑓𝐶

and the phase shift is 

𝜙 = −
𝜋

2

If there is only resistor in the circuit (𝑋 = 0), the phase shift between the current and the voltage is zero. 

VR VL VC 

V,f 

L C R 
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Figure 5.2. 

Figure 5.3. 

P M 

N 

C 

Lamp 

N 

M P 
VR 

VC 
V 
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5.2. Experimental Procedure 

1. Set the circuit up shown in Fig.5.2. Wait the instructor to connect your circuit to the 
mains!

2. Read the effective value of the current with the ammeter.

3. Read the value of VR, VC and V between points PM, MN and PN with the voltmeter.

4. Draw the triangle shown in Fig.5.3.

5. Find the phase shift between the voltage of the capacitor, VC and the current I and the phase

shift between the total voltage, V and the current, I of the circuit with the angle meter.

6. Find the value of C (the capacitance of the capacitor) using the following equation:

𝑉𝐶 =
𝐼

2𝜋𝑓𝐶

Note: f=50 Hz. 

ATTENTION!!!! 

To avoid accidents when measuring the voltage, drive the current to the circuit after connecting a 

voltmeter. 
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