
ISTD, Vol.1, No.2, 2020

91

INTERNATIONAL JOURNAL OF SCIENCE, TECHNOLOGY AND DESIGN

ULUSLARARASI

BİLİM, TEKNOLOJİ VE TASARIM DERGİSİ

Elektrikli Araç Şarj Ünitesi için OCCP ile Yazılım Uygulaması

Recep GÖZÜTOK

TOFAŞ AR&GE, BURSA, TURKEY

Corresponding Author: Recep GÖZÜTOK, recep.gozutok@tofas.com.tr

Özet Article Info

Elektrikli Araçlar tüm dünyada mobilite için yeni standart

haline gelmektedir. Bu gelişme ancak şarj istasyonlarının

geniş kullanım alanına sahip olması ile mümkündür.

Şarj altyapısının yaygınlaştırılmasını ilerletmek için, açık

iletişim standartları kilit bir rol oynar: tüm Şarj

İstasyonlarını değiştirmeden şarj ağından geçişi mümkün

kılmak, yenilikçiliği ve maliyet etkinliğini teşvik etmek ve çok

sayıda ve farklı oyuncunun bu yeni sektöre katılmasına izin

vermek.

Ek olarak, elektrikli araç şarj altyapısı, aktörler, cihazlar ve

protokollerden oluşan daha büyük ve hala gelişen bir

ekosistem olan Akıllı Şebekenin bir parçasıdır. Bu Akıllı

Şebeke ekosisteminde, açık iletişim standartları iki yönlü güç

akışları, gerçek zamanlı bilgi alışverişi, talep kontrolü ve

eMobilite hizmetleri için temel kolaylaştırıcılardır.

Açık Şarj Noktası Protokolü (OCPP), bir Şarj İstasyonu ile

Şarj İstasyonu Yönetim Sistemi (CSMS) arasındaki iletişim

için endüstri tarafından desteklenen fiili standarttır ve her

türlü şarj tekniğini barındıracak şekilde tasarlanmıştır.

Bu yazıda, OCPP'nin sunduğu işlevlerin ve elektrikli araç

şarj altyapısında nasıl kullanılabileceğinin gözden

geçirilmesi amaçlanmaktadır.

 Research Article

Received:10/06/2020

Accepted:21/08/2020

 Anahtar Kelimeler

 WSDL - Web

Hizmetleri Açıklama

Dili, OCPP - Açık Şarj

Noktası Protokolü,

XML - Genişletilebilir

İşaretleme Dili, SOAP

- Basit Nesne Erişim

Protokolü, OCA - Açık

Şarj Birliği, HTTP -

Köprü Metni Aktarım

Protokolü.

Software application for electric vehicle charging unit with OCCP

Abstract Keywords

ISTD, Vol.1, No.2, 2020

92

Electric Vehicles (EVs) are becoming the new standard for

mobility all over the world. This development is only possible

with good coverage of Charging Stations.

To advance the roll out of charging infrastructure, open

communication standards play a key role: to enable switching

from charging network without necessarily replacing all the

Charging Stations, to encourage innovation and cost

effectiveness and to allow many and diverse players to

participate in this new industry.

Additionally, the EV charging infrastructure is part of the

Smart Grid, a larger and still evolving ecosystem of actors,

devices and protocols. In this Smart Grid ecosystem, open

communications standards are key enablers for two-way

power flows, real-time information exchange, demand control

and eMobility services.

The Open Charge Point Protocol (OCPP) is the industry-

supported de facto standard for communication between a

Charging Station and a Charging Station Management

System (CSMS) and is designed to accommodate any type of

charging technique. OCPP is an open standard with no cost

or licensing barriers for adoption.

In this paper, providing a review of the functionalities OCPP

offers and how it can be used in the electrical vehicle-

charging infrastructure is aimed.

 WSDL - Web Services

Description Language,

OCPP - Open Charge

Point Protocol, XML -

Extensible Markup

Language, SOAP -

Simple Object Access

Protocol, OCA - Open

Charge Alliance,

HTTP - Hypertext

Transfer Protocol.

1. Introduction

The Open Charge Point Protocol (OCPP) is an application protocol for communication

between EV (Electric Vehicle) charging stations and a central management system, also

known as a charging station network, like cell phones and cell phone networks (Pruthvi

et.al 2019).

The protocol is an initiative of the E-Lad foundation in the Netherlands. It aimed to create

an open application protocol which allows EV charging stations and central management

systems from different vendors to communicate with each other.

It is in use by many vendors of EV charging stations and central management systems all

over the world. Open Automated Demand Response (OpenADR) is an open and

standardized way for electricity providers and system operators to communicate Demand

Response (DR) signals with each other and with their customers using a common

language over any existing IP-based communications network, such as the Internet

(Hoekstra et.al. 2019).

ISTD, Vol.1, No.2, 2020

93

Smart charging allows initiating and stopping the charge process with a high level of

controllability. It also supports authentication mechanisms between the user or the vehicle

and the charging station, as well as the exchange of contract data. This may be used for

payment systems in public charging stations (Wellisch et al. 2015 and Zhao and You

2017).

Implementing smart charging in a liberalized context, calls for an interaction and

corresponding information exchange between many actors: DSOs, charge stations, EVs,

EV drivers, energy suppliers and possibly new market participants like CSPs and CSOs.

Without standardized protocols for smart charging these information exchanges will be

implemented on a project and ad-hoc basis resulting in extra costs, long implementation

times and a system that is not interoperable (Ferwerda et. al 2018).

Table 1. Commonly used terms

Term Meaning
Charging Station The Charging Station is the physical system

where an EV can be charged. A Charging

Station has one or more EVSEs

Charging Station Management

System (CSMS)

Charging Station Management System:

manages Charging Stations and has the

information for authorizing Users for using its

Charging Stations.

Electric Vehicle Supply

Equipment (EVSE)

An EVSE is considered as an independently

operated and managed part of the Charging

Station that can deliver energy to one EV at a

time

CSO Charging Station Operator

EV Electric Vehicle

RFID Radio-Frequency Identification

However, to my knowledge, none of the previously proposed studies examine working

logic in real-time. As a result, the aim of this study is to show the real-time operation of

Open Charge Point Protocol and to consider its results. And you can find the commonly

used term are mentioned in Table 1.

2. Background

The Open Charge Point Protocol (OCPP) is an initiative led by the Open Charge Alliance

(OCA). It is an open communication protocol that allows electric vehicle charging

stations and central management software to communicate with each other. The protocol

has been adopted by dozens of leading charging station providers and auto manufacturers

around the world (Engelen 2019).

Open protocols are crucial for the budding EV charging market. They enable

interoperability between charging stations, vehicles, and station management services.

Open protocols promote innovation and collaboration, and they ensure the cost of EV

charging remains competitive for business owners and EV drivers alike.

ISTD, Vol.1, No.2, 2020

94

OCPP also makes it easier to create a large-scale, visible network that uses a range of

different charging stations since there is a requirement for only one operating system.

Proponents of OCPP also cite a reduction in development costs since software designed

to provide additional functionality would only need to be developed once and not several

times to fit with each individual operating system.

Finally, OCPP will ease interoperability across the United States, and elsewhere, and

minimize remedial work on systems.

SOAP (originally Simple Object Access Protocol) is a protocol specification for

exchanging structured information in the implementation of web services in computer

networks. Its purpose is to induce extensibility, neutrality and independence.

It uses XML Information Set for its message format, and relies on application layer

protocols, most often Hypertext Transfer Protocol (HTTP) or Simple Mail Transfer

Protocol (SMTP), for message negotiation and transmission.

SOAP allows processes running on disparate operating systems (such as Windows and

Linux) to communicate using Extensible Markup Language (XML). Since Web protocols

like HTTP are installed and running on all operating systems, SOAP allows clients to

invoke web services and receive responses independent of language and platforms (Box

and Curbera 2004).

Figure 1: A SOAP message is an ordinary XML document containing the following elements

SOAP provides the Messaging Protocol layer of a web services protocol stack for web

services. It is an XML-based protocol consisting of three parts:

• an envelope, which defines the message structure and how to process it

• a set of encoding rules for expressing instances of application-defined

datatypes

• a convention for representing procedure calls and responses SOAP has three

major characteristics:

• extensibility; (security and WS-Addressing are among the extensions under

development)

• neutrality; (SOAP can operate over any protocol such as HTTP, SMTP, TCP,

UDP, or JMS)

• independence; (SOAP allows for any programming model)

ISTD, Vol.1, No.2, 2020

95

As an example of what SOAP procedures can do, an application can send a SOAP request

to a server that has web services enabled such as a real-estate price database with the

parameters for a search. The server then returns a SOAP response (an XML-formatted

document with the resulting data), e.g., prices, location, features. Since the generated data

comes in a standardized machine-parable format, the requesting application can then

integrate it directly.

The SOAP architecture consists of several layers of specifications for:

• message format

• Message Exchange Patterns (MEP)

• underlying transport protocol bindings

• message processing models

• protocol extensibility

SOAP evolved as a successor of XML-RPC, though it borrows its transport and

interaction neutrality from Web Service Addressing and the envelope/header/body from

elsewhere (probably from WDDX) as shown Figure1.

XML Information Set was chosen as the standard message format because of its

widespread use by major corporations and open source developing efforts. Typically,

XML Information Set is serialized as XML. A wide variety of freely available tools

significantly eases the transition to a SOAP-based implementation.

The somewhat lengthy syntax of XML can be both a benefit and a drawback. While it

promotes readability for humans, facilitates error detection, and avoids interoperability

problems such as byte-order, it can slow processing speed and can be cumbersome. For

example, CORBA, GIOP, ICE, and DCOM use much shorter, binary message formats.

On the other hand, hardware appliances are available to accelerate processing of XML

messages. Binary XML is also being explored as a means for streamlining the throughput

requirements of XML. XML messages by their self-documenting nature usually have

more 'overhead' (headers, footers, nested tags, delimiters) than actual data in contrast to

earlier protocols where the overhead was usually a relatively small percentage of the

overall message.

In this work, new SOAP type gives up to four times larger message than previous

protocols FIX (Financial Information Exchange) and CDR (Common Data

Representation).

The gSOAP tools provide an automated SOAP and XML data binding for C and C++

based on compiler technologies. The tools simplify the development of SOAP/XML Web

services and XML application in C and C++ using auto code generation and advanced

mapping methods. Most toolkits for Web services adopt a WSDL/SOAP-centric view and

offer APIs that require the use of class libraries for XML-specific data structures. This

forces a user to adapt the application logic to these libraries because users must write code

to populate XML and extract data from XML using a vendor-specific API.

ISTD, Vol.1, No.2, 2020

96

This often leads to fragile solutions with little or no assurances for data consistency, type

safety, and XML validation. By contrast, gSOAP provides a type-safe and transparent

solution using compiler technology that hides irrelevant WSDL-, SOAP-, REST-, and

XML-specific protocol details from the user, while automatically ensuring XML validity

checking, memory management, and type-safe serialization.

The gSOAP tools automatically map native and user-defined C and C++ data types to

semantically equivalent XML data types and vice-versa. As a result, full SOAP/REST

XML interoperability is achieved with a simple API relieving the user from the burden

of WSDL/SOAP/XML details, thus enabling him or her to concentrate on the application-

essential logic.

The gSOAP tools are also popular to implement XML data binding in C and C++. This

means that application-native data structures can be encoded in XML automatically,

without the need to write conversion code. The tools also produce XML schemas for the

XML data binding, so external applications can consume the XML data based on the

schemas.

The gSOAP tools support the integration of (legacy) C/C++ codes (and other

programming languages when a C interface is available), embedded systems, and real-

time software in SOAP/XML applications that share computational resources and

information with other SOAP applications, possibly across different platforms, language

environments, and disparate organizations located behind firewalls.

3. Implementation and evaluation

3.1 Developing a web service client application

The gSOAP tools minimize application adaptation efforts for building Web Services by

using a XML data binding for C and C++ implemented by advanced XML schema

analyzers and source-to-source code generation tools.

The gSOAP wsdl2h tool imports one or more WSDLs and XML schemas and generates

a gSOAP header file with familiar C/C++ syntax to define the Web service operations

and the C/C++ data types.

The gSOAP soapcpp2 compiler then takes this header file and generates XML serializers

for the data types (soapH.h and soapC.cpp), the client-side stubs (soapClient.cpp), and

server-side skeletons (soapServer.cpp).

The gSOAP soapcpp2 compiler can also generate WSDL definitions for implementing a

service from scratch, i.e. without defining a WSDL first. This "closes the loop" in that it

enables Web services development from WSDL or directly from a set of C/C++

operations in a header file without the need for users to analyze Web service details.

3.2 Developing a Web Service Application

Start with a gSOAP header file, currentTime.h which contains the service definitions.

Such a file can be obtained from a WSDL using wsdl2h when a WSDL is available. When

ISTD, Vol.1, No.2, 2020

97

a WSDL is not available, you can define the service in C/C++ definitions in a newly

created header file and let the gSOAP tools generate the source code and WSDL for us.

Our currentTime service only has an output parameter, which is the current time defined

in our currentTime.h gSOAP service specification:

It associates an XML namespace prefix ns and namespace name urn:currentTime with

the service WSDL and SOAP/XML messages. The gSOAP tools use a special convention

for identifier names that are part of a namespace: a namespace prefix (ns in this case)

followed by a double underscore. This convention is used to resolve namespaces and to

avoid name clashes. The ns namespace prefix is bound to the urn:currentTime namespace

name with the //gsoap directive. The //gsoap directives are used to set the properties of

the service, in this case the name, namespace, and location endpoint.

A more elegant server implementation in C++ can be obtained by using the soapcpp2

option - i (or -j) to generate C++ client-side proxy and server-side service objects as

classes that you can use to build clients and services in C++. The option removes the

generation of soapClient.cpp and soapServer.cpp, since these are no longer needed when

that have classes that implement the client and server logic:

> soapcpp2 -i -S currentTime.h

This generates soapcurrentTimeService.h and soapcurrentTimeService.cpp files, as well

as auxiliary files soapStub.h (included by default by all codes) and currentTime.nsmap

and then compile with the Makefile file with "make" order. The soapcpp2 tool generated

the WSDL definitions currentTime.wsdl. Therefore, it can be run the binary on the auto-

generated example request XML file to test your server:

> /currentTime

WSDL can be used to advertise our service and not need to use this WSDL to develop a

gSOAP client. currentTime.h file can be used with soapcpp2 option -C to generate client-

side code:

> soapcpp2 -i -C currentTime.h

3.3 Developing a web service client application

3.3.1 Boot notification

After start-up, a Charge Point shall send a request to the Central System with information

about its configuration (e.g. version, vendor, etc.). The Central System shall respond to

indicate whether it will accept the Charge Point.

The Charge Point shall send a BootNotification.req PDU each time it boots or reboots.

Between the physical power-on/reboot and the successful completion of a Boot

Notification, where Central System returns Accepted or Pending, the Charge Point shall

not send any other request to the Central System.

This includes cached messages that are still present in the Charge Point from before.

When the Central System responds with a BootNotification.conf with a status Accepted,

the Charge Point will adjust the heartbeat interval in accordance with the interval from

ISTD, Vol.1, No.2, 2020

98

the response PDU and it is recommended to synchronize its internal clock with the

supplied Central System’s current time.

If the Central System returns something other than Accepted, the value of the interval

field indicates the minimum wait time before sending a next Boot Notification request. If

that interval value is zero, the Charge Point chooses a waiting interval on its own, in a

way that avoids flooding the Central System with requests. awaiting interval on its own,

in a way that avoids flooding the Central System with requests as shown Figure 2.

Figure 2: Sequence diagram of Boot Notification

3.3.2 Heartbeat

To let the Central System, know that a Charge Point is still connected, a Charge Point

sends a heartbeat after a configurable time interval. The Charge Point shall send a

Heartbeat.req PDU for ensuring that the Central System knows that a Charge Point is still

alive.

Upon receipt of a Heartbeat.req PDU, the Central System shall respond with a

Heartbeat.conf. The response PDU shall contain the current time of the Central System,

which is recommended to be used by the Charge Point to synchronize its internal clock

as referenced in Figure 3.

Figure 3: Sequence diagram of Heartbeat

The Charge Point may skip sending a Heartbeat.req PDU when another PDU has been

sent to the Central System within the configured heartbeat interval. This implies that a

Central System should assume availability of a Charge Point whenever a PDU has been

received, the same way as it would have, when it received a Heartbeat.req PDU.

3.3.3 Authorize

Before the owner of an electric vehicle can start or stop charging, the Charge Point must

authorize the operation. The Charge Point shall only supply energy after authorization.

When stopping a Transaction, the Charge Point shall only send an Authorize.req when

the identifier used for stopping the transaction is different from the identifier that started

the transaction.

Authorize.req should only be used for the authorization of an identifier for charging. A

Charge Point may authorize identifier locally without involving the Central System, as

ISTD, Vol.1, No.2, 2020

99

described in Local Authorization List. If an idTag presented by the user is not present in

the Local Authorization List or Authorization Cache, then the Charge Point shall send an

Authorize.req PDU to the Central System to request authorization.

 If the idTag is present in the Local Authorization List or Authorization Cache, then the

Charge Point may send an Authorize.req PDU to the Central System as shown in Figure

4.

Figure 4: Sequence diagram of Authorize

3.3.4 Thread

Multithreading is a specialized form of multitasking and multitasking is a feature that

allows your computer to run two or more programs concurrently. There are two types of

multitasking: process-based and thread based. Process-based multitasking handles the

concurrent execution of programs. Thread-based multitasking deals with the concurrent

execution of pieces of the same program.

Figure 5: An example of the Thread

ISTD, Vol.1, No.2, 2020

100

A multithreaded program contains two or more parts that can run concurrently. Each part

of such a program is called a thread, and each thread defines a separate path of execution.

C++ does not contain any built-in support for multithreaded applications. Instead, it relies

entirely upon the operating system to provide this feature. Class to represent individual

threads of execution.

A thread of execution is a sequence of instructions that can be executed concurrently with

other such sequences in multithreading environments, while sharing a same address

space.

An initialized thread object represents an active thread of execution; Such a thread object

is joinable and has a unique thread id. A default-constructed (non-initialized) thread

object is not joinable, and its thread id is common for all non-joinable threads. A joinable

thread becomes not joinable if moved from, or if either join or detach are called on them.

Using the thread system in the software application of execution is the smallest sequence

of programmed instructions that can be managed independently by a scheduler, which is

typically a part of the operating system.

3.3.5 Reserve Now

A Central System can issue a ReserveNow.req to a Charge Point to reserve connector for

use by a specific idTag. To request a reservation the Central System shall send a

ReserveNow.req PDU to a Charge Point. The Central System may specify a connector to

be reserved. Upon receipt of a ReserveNow.req PDU, the Charge Point shall respond with

a ReserveNow.conf PDU.

If the reservationId in the request matches a reservation in the Charge Point, then the

Charge Point shall replace that reservation with the new reservation in the request. If the

reservationId does not match any reservation in the Charge Point, then the Charge Point

shall return the status value ‘Accepted’ if it succeeds in reserving a connector as shown

in Figure 6.

Figure 6: Sequence diagram of the Reserve Now

The Charge Point shall return ‘Occupied’ if the Charge Point or the specified connector

are occupied. The Charge Point shall also return ‘Occupied’ when the Charge Point or

connector has been reserved for the same or another idTag.

The Charge Point shall return ‘Faulted’ if the Charge Point or the connector are in the

Faulted state. The Charge Point shall return ‘Unavailable’ if the Charge Point or

connector are in the Unavailable state. The Charge Point shall return ‘Rejected’ if it is

configured not to accept reservations.

ISTD, Vol.1, No.2, 2020

101

If want to generate the ReserveNow.res in our Client Point, firstly we must structure the

.h file of the Reserve Now operation. In addition, that if we want to structure the .h file

we must know the field definitions of the ReserveNow.res and Reserve.req.

4. Conclusion

This paper reviews the Open Charge Point Protocol (OCPP), which can be adopted as a

standard for the back-end communication between electric vehicle charging stations and

the central management system. The various versions of the protocol were discussed

along with the improvements in its functionalities and

features. Sample user interfaces of the possible implementation of the OCPP protocol

were also shown for the central management system and the charging

station, both.

The OCPP protocol describes a large number of use cases and messages, which are not

all needed to implement a basic Charging Station or CSMS. This software is written in C

++ code using the Gsoap library, based on XML, using the SOAP procedure according to

the OCP procedure.

At the end of the study, the software is ready to run without error. Other functions

included in the OCP procedure can be added to this software with the acquisition of

hardware. The Table 1 below lists messages that are typically implemented to deliver

basic functionality for an OCPP managed Charging Station. There are OCPP

functionalities in Table 2.

Table 2. OCPP functionalities

Functionality Messages

Booting a Charging Station
Boot Notification

Configuring a Charging

Station
Set Variables, Get Variables and Get

Report Base (respond correctly to

requests with report Base =

Configuration Inventory, Full

Inventory, Summary Inventory).

Resetting a Charging Station
Reset

Authorization Options
Authorize

Transaction Mechanism
Transaction Event

Availability
Only Change Availability and Status

Notification.

Monitoring Events
A basic implementation of the Notify

Event message to be used to report

operational state changes and

problem/error conditions of the

Charging Station, e.g. for Lock Failure.

Also used for reporting built-in

monitoring events.

ISTD, Vol.1, No.2, 2020

102

Sending Transaction Related

Meter Values
Transaction Event

Data Transfer
Any OCPP implementations should at

least be able to reject any request for

Data Transfer if no (special)

functionality is implemented.

Resetting a Charging Station
Reset

Authorization Options
Authorize

Transaction Mechanism
Transaction Event

This software is written according to the OCP procedure to provide the commonization

of the electric vehicle charging points. With this integration, all charging points can be

controlled from a center.

5. References

Box, D., Curbera, F., 2004. Web Services Addressing (WS-Addressing). W3C Member

Submission, https://www.w3.org/Submission/ws-addressing/

Engelen, R.V., 2019. gSOAP user guide.

https://www.genivia.com/doc/guide/html/index.html

Ferwerda, R., Bayings, M., Kam, M.V, Bekkers, R. 2018. Advancing E-Roaming in

Europe: Towards a Single “Language” for the European Charging Infrastructure, World

Electr. Veh. J.

Hoekstra, A, Bienert, R., Wargers, A., Singh, H., Voskuilen, P., 2019. Using

OpenADR with OCPP. https://openadr.memberclicks.net

Pruthvi, T.V., Dutta, N., Bobba, P.B., Sasudeva, S. 2019. Implementation of OCPP

Protocol for Electric Vehicle. E3S Web of Conferences.

Wellisch, D., Lenz, J., Faschingbauer, A., Pöschl, R., Kunze, S. 2015. An Approach

for Smart Charging Development. IFAC-PapersOnLine.

Zhao, C., You, X. 2017. Research and Implementation of OCPP 1.6 Protocol. 2nd

International Conference on Machinery Electronics and Control Simulation.

https://www.w3.org/Submission/ws-addressing/
https://www.genivia.com/doc/guide/html/index.html
https://openadr.memberclicks.net/

