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Abstract
This paper presents a comprehensive survey of optimization developments in various aspects of electric vehicles (EVs). 
The survey covers optimization of the battery, including thermal, electrical, and mechanical aspects. The use of advanced 
techniques such as generative design or origami-inspired topological design enables by additive manufacturing is discussed, 
along with sensitivity studies of battery performance with alternate materials and incorporating sustainability considera-
tions. Strategies for battery charging/discharging and battery swapping are reviewed, taking into consideration factors such 
as operation, cost, battery performance, and range anxiety. Future research is suggested to address uncertainties in charging 
ecosystem design and incorporate both forward and inverse prediction capabilities, leveraging benefits for both the grid and 
individual vehicles. The optimization techniques for other EV components, such as motors, powertrains, tires, and chassis, 
are also discussed. Finally, this paper presents a review of the EV management, specifically the optimization of charging 
station, grid, and fleet management, including research on charging station construction, charging station operation strate-
gies, and power system operation strategies. The need for further research on robustness, reliability, and sustainability is 
emphasized to justify the use of EVs in the future.

Keywords Battery electric vehicle · Component design optimization · Management strategy optimization · System 
optimization

1 Introduction

1.1  Review motivation

The automotive industry faces increasing environmental 
challenges, prompting a surge in research on electric vehi-
cles (EVs) that is expected to continue. A comparative study 
examining the life cycle assessment of Electric Vehicles 

(EVs) and conventional fuel engine vehicles reveals a note-
worthy finding: during operational use, EVs exhibit approxi-
mately 50% lower greenhouse gas emissions compared to 
conventional vehicles. However, when evaluating the manu-
facturing phase, EVs surprisingly demonstrate significantly 
higher emissions than their conventional counterparts. EVs 
present promising potential in reducing greenhouse gas 
emissions compared to traditional vehicles (Tagliaferri et al. 
2016; Hawkins et al. 2013). Nevertheless, the manufacturing 
phase remains a substantial obstacle to the overall environ-
mental performance of EV technology. Addressing this chal-
lenge necessitates extensive foundational research. Future 
advancements in energy sources and technological efficien-
cies have the potential to mitigate emissions during the man-
ufacturing phase of EVs, thereby narrowing the gap between 
EV and conventional vehicle manufacturing emissions. To 
produce EVs with high performance, energy efficiency, and 
low cost, design optimization studies have been conducted 
at both the component and system level. However, while lit-
erature reviews exist on various aspects of EVs, such as life 
cycle assessment, architecture and topology development, 
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control, infrastructure planning, consumer preferences and 
awareness, there is a lack of review on design optimization 
studies conducted for EVs (Hoque et al. 2017; Gabbar et al. 
2021; Safayatullah et al. 2022; Unterluggauer et al. 2022; 
Liao et al. 2016). Therefore, this paper aims to provide an 
in-depth review of such studies and suggest future research 
areas.

Presently, both industry and academic sectors contrib-
ute to advancing battery design and optimization, but they 
often have different goals, approaches, and perspectives. 
Frith et al. (2023) published a paper on industrial aspects. It 
is mentioned that academic researchers usually operate on a 
lower technology readiness level so they are less concerned 
with or unexposed to end-user requirements or criticalities 
that need to be considered when scaling up and manufac-
turing an energy storage device. Batteries in a research 
laboratory are often tested using conditions and parameters 
far from commercial devices. Within the battery industry, 
there have been several high-profile examples of compa-
nies investing in over-hyped technologies which failed to 
meet the promised performance were also mentioned by the 
paper. Industrial entities, including battery manufacturers 
and technology companies, prioritize battery models that 
can be applied in real-world products. They focus on models 
that can help design and optimize battery packs for specific 
applications like EVs or energy storage systems. Industrial 
entities often rely heavily on proprietary data from their own 
battery manufacturing processes and field performance data. 
These models aim to predict battery behavior under specific 
conditions and usage patterns. These models prioritize cost-
effectiveness and efficiency in their modeling efforts. This 
means finding practical solutions that can be implemented at 
scale within budget constraints. Whereas academic institu-
tions have been focusing on fundamental understanding and 
scientific advancements.

Researchers in academia develop complex, physics-based 
models that explore the underlying electrochemical processes 
in batteries and promote open-source battery modeling tools. 
Academic researchers may take a long-term view, exploring 
cutting-edge ideas that may not have immediate commercial 
applications. Cao et al. (2019) talks about some of the most 
important testing factors that are frequently disregarded in 
academic literature but are essential for real-world use out-
side of the lab. There were explanations for metrics including 
anode energy density, voltage hysteresis, mass of non-active 
cell components, and anode/cathode mass ratio, as well as 
suggestions for future reporting. Though the perspective on 
the subject of industry and academia complement each other 
but due to the unlike mindset and goals, there are some gaps 
and challenges. Regarding the battery models, industrial enti-
ties require models that are rigorously validated and verified 
under various operating conditions and across different battery 
chemistries. Academia may lack access to proprietary industry 

data, making it challenging to develop models that are directly 
applicable to industrial systems. Industrial models prioritize 
computational efficiency, as they need to run in real-time or 
near real-time for practical applications while on the contrary 
academic models might be computationally intensive since 
they focus on the quality of the solution.

1.2  Challenges in design optimization of electric 
vehicles

Design optimization of EVs poses significant interdisciplinary 
challenges, including power management and optimization, 
system integration, vehicle dynamics and control, drivetrain 
systems, chassis design and layout, and electrification of 
automotive systems. Key challenges in EV design include 
limited driving range and battery degradation, insufficient 
charging infrastructure, and uncertain powertrain component 
performance under varying environmental conditions such as 
temperature variation and mechanical shocks. EVs require 
simultaneous optimization of various components, includ-
ing batteries, powertrain, electric motors, body and chassis, 
suspension system, and tire, under uncertainties as shown in 
Fig. 1. Furthermore, optimization must also be considered at 
various levels, from the battery cell level to the system level, 
making design optimization of EVs numerically challenging 
(Un-Noor et al. 2017; López et al. 2019; Ghosh 2020; Haram 
et al. 2021). EV optimization includes component optimization 
that deals with the shape of components, management optimi-
zation that deals with the operation of components, and system 
optimization that deals with the external system of EV. This 
paper aims to review existing literature that addresses these 
challenges in design optimization of EVs.

1.3  Paper organization

The remainder of the paper is organized as follows. Section 2 
provides a review of thermal, electrical, and mechanical opti-
mization studies for EV batteries, covering battery cell thermal 
management, battery liquid/air cooling, battery charging strat-
egies, and mechanical optimization. Section 2 is related to the 
thermal system (cooling), power electronic controller, charge 
port, and traction battery pack in Fig. 1. Section 3 reviews 
design optimization studies for other EV components, such as 
powertrain, motor, body and chassis, suspension system, and 
tire. Section 3 relates to transmission, electric traction motor, 
chassis, and tires in Fig. 1. In Sects. 2 and 3, design variables, 
constraints, and objective functions are organized in a table 
according to the following general optimization formula.

�������� ∶
(

f1(x), f2(x)… , fn(x)
)

(1)s.t. ∶ gi(�) ≤ �, � = �, �, ..,�; #
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Section 4 focuses on design optimization studies for 
EV management, including charging stations, grid man-
agement, and fleet management. Finally, Sect. 5 con-
cludes the paper with remarks on the current status of 
design optimization of EVs and suggests future research 
directions.

hj(�) = 0, � = �, �, .., � 2  Optimization of battery in EV

The battery is one of the most critical components of an 
EV, consisting of battery cells that are combined to form a 
battery module, which in turn is combined to form a battery 
pack. The battery has a significant impact on the effective-
ness and performance of EVs, leading to numerous stud-
ies being carried out to enhance its power, efficiency, and 
stability.

Figure 2 presents the broad classes of battery optimi-
zation, which include thermal, electrical, and mechanical 

Fig. 1  General EV with main components (Image skeleton courtesy of Siemens Digital Industry Software)

Fig. 2  Overview of EV battery 
optimization object
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optimization. Thermal optimization aims to maintain a 
constant temperature of the battery cell while transport-
ing heat to the outside. This can be achieved by adjusting 
the configuration of battery cells or designing a cooling 
component. Electrical optimization focuses on making the 
battery's charging and discharging process more efficient, 
with a specific emphasis on the battery's electrochemical 
characteristics. Mechanical optimization typically aims to 
increase the battery's mechanical stability, accomplished by 
choosing the structure of the battery pack or the shape of the 
battery cell protector as a design variable. In the following 
sections, we review the literature on optimization for each 
aspect discussed above.

2.1  Thermal optimization of battery

Section 2.1 discusses various thermal management tech-
niques as shown in Fig. 3 used to dissipate heat generated 
by EV batteries, which can be detrimental to battery per-
formance and lifespan. The section mainly focuses on cell 
cooling method and liquid/air cooling method.

Air cooling is divided into natural convection cooling and 
forced convection cooling. Natural convection cooling is the 
least complex and basic cooling method (Zhao et al. 2023). 
However, natural convection cooling shows a much lower 
heat transfer rate than forced convection cooling (Akinlabi 
and Solyali 2020). The liquid cooling method has higher 
system complexity than the air cooling method in that it 
requires a separate coolant and related systems other than 
air (Chen et al. 2016). However, liquid cooling shows a heat 
transfer rate that is 2 to 3 times greater than forced con-
vection cooling (Liu et al. 2017). Currently, most electric 

vehicles use liquid cooling, and only a few, including Nissan, 
use forced convection cooling.

The cell cooling uses phase change material (PCM), heat 
pipes, and fins. The liquid cooling technique uses a cooling 
plate with micro-channels, while air cooling uses tubes with 
different shapes, such as straight, Z-shaped, and U-shaped. 
The section also mentions various optimization techniques 
employed for both liquid and air-based cooling methods.

2.1.1  Battery cell thermal management

During the process of converting battery energy into EV 
power, heat is generated, making battery cell heat control 
crucial for effective and safe battery operation. The tempera-
ture of a battery cell has a significant impact on its power, 
and excessively high temperatures can lead to thermal runa-
way. To manage cell temperature, various techniques are 
applied to battery cells, including PCM, heat pipes, and fins, 
among others.

The PCM approach utilizes a material's latent heat to 
prevent sudden temperature increases in battery cells. A 
material with high latent heat capacity and a phase change 
temperature suitable for the battery thermal management 
system's temperature range is selected for PCM. Since the 
temperature rise of the battery cell slows down while the 
PCM undergoes a phase transition, this method is primarily 
used to avoid rapid temperature increases in a short period 
of time.

A study conducted by Weng et al. (2019, 2020) proposed 
a PCM-based approach to reduce the temperature rise of 
cylindrical battery cells by placing the PCM in close prox-
imity to the battery cell. The study evaluated the thermal 
management performance by varying the presence of PCM, 

Fig. 3  Overview of thermal 
optimization of EV battery
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its phase change temperature, and the amount of PCM used. 
Zhao et al. (2017) reported the results of applying PCM to 
a system of cylindrical battery cells, where the PCM was 
positioned in the middle of the cell. Li et al. (2018a) sug-
gested a technique for reducing the mass of the cylindrical 
PCM by improving its geometry and filling it with multiple 
cylindrical battery cells. The study optimized several param-
eters that affect the structure of the PCM system. Javani et al. 
(2014) proposed an approach to maximize the mass fraction 
of PCM in terms of exergy, using the non-dominated sort-
ing genetic algorithm II (NSGA-II) optimization technique. 
Youssef et al. (2022) suggested the use of jute fibers in con-
junction with PCM for optimizing the cooling system of a 
battery cell, as jute fiber is an inexpensive and lightweight 
material with excellent cooling properties.

A battery module is a collection of multiple battery cells 
in an EV, and PCM can be used for cooling this type of 
module unit. When many prismatic battery cells are joined 
in a battery module, Wu et al. (2017) suggested optimizing 
the percentage of PCM used. In their study, a PCM module 
based on paraffin/expanded graphite composites was specifi-
cally used. For numerous cylindrical battery cells coupled 
to form a battery module, Wu et al. (2020a) recommended 
structural optimization of PCM.

Heat pipes are an improved technique for quick heat 
transfer. Behi et al. (2020a, 2020b) proposed a method of 
applying heat pipes to air cooling and liquid cooling. In their 
study, heat pipes were added to the side of cylindrical bat-
tery cells as part of an analysis of a system utilizing forced 
air cooling. He et al. (2022a) put forth a technique to mini-
mize thermal contact resistance between the heat pipe and 
battery cells in liquid cooling. To improve the contact area 
and decrease thermal resistance, the heat transfer sheet was 
wrapped in an arc around the side of the cylindrical battery 
cell and the side of the heat pipe. Ye et al. (2015, 2016) 
proposed a method of applying a heat pipe to a prismatic 
battery cell.

Heat pipe cooling is commonly combined with other 
cooling systems for battery cell thermal management. Zeng 
et al. (2022) suggested system optimization using cool-
ing plates and micro heat pipes. In this method, the heat is 
transferred from the battery cell to the cooling plate by the 
U-shaped micro heat pipe. Lei et al. (2020) proposed water 
spray optimization for battery cell cooling, where water is 
sprayed directly onto the heat pipe connected to the bat-
tery cell to remove heat. Zhang et al. (2021a) proposed the 
structural optimization of a combined battery cell cooling 
system using PCM and heat pipe. Design elements such as 
the length of the heat pipe, the thermal conductivity of the 
PCM, its thickness, and the velocity of the incoming water 
were taken into account in this study.

The most basic technique for quick heat transfer involves 
fins. The thermal impact of using pin–fin for battery air 

cooling was examined by Mohammadian et al. (2015). Fins 
are frequently combined with other cell thermal control tech-
niques, such as PCM. Choudhari et al. (2020) suggested an 
improvement to battery thermal management structure using 
fins and PCM. In this paper, the fins are positioned parallel 
to the cylindrical battery cell's side, helping the PCM receive 
heat from the battery cell. Wang et al. (2021a) presented a 
cooling system for optimization that combines an L-shaped 
fin and a liquid cooling plate. Control of battery cell tem-
perature is the most crucial aspect of EV optimization, and 
optimizing battery cell temperature is frequently done in 
conjunction with optimization of other aspects.

Immersion cooling is a method of cooling the battery 
cell by directly contacting the electrically insulated working 
fluid. Immersion cooling can produce about 10,000 times 
more heat transfer than passive air cooling (Roe et al. 2022). 
Roy et al. (2022) proposed a method for optimizing the flow 
path of immersion cooling. The shape of the flow path was 
optimized through topology optimization, and pressure drop 
and heat transfer rate were used as objective functions.

Like high temperatures, low temperatures affect the per-
formance and safety of battery cells (Wu et al. 2020b). At 
low temperatures below 0 °C, the electrolyte conductivity, 
the charge-transfer kinetics and the solid-state diffusion of 
lithium ions are lowered. Accordingly, the internal resist-
ance of the battery cell increases and the discharge capacity 
decreases. When charging at a low temperature, the lifespan 
of the battery is reduced due to problems such as anode 
lithium plating.

In order to solve this problem, a battery heating method 
has been studied in many papers. The battery heating 
method includes external heating method and internal heat-
ing method. The external heating method heats the battery 
cell through heat transfer from the outside. Ma et al. (2022) 
proposed a method for optimizing a battery heating system 
using liquid. The temperature of the battery cell and the 
pressure of the liquid were used as the objective function, 
and the genetic algorithm was used as the optimization algo-
rithm. The internal heating method is a method of heating a 
battery cell using the power inside the battery. The internal 
heating method has the advantage of being able to increase 
the temperature faster than the external heating method and 
not being affected by the shape of the battery. Zhu et al. 
(2021a) proposed a method for optimizing the operation of 
a resonant self-heater, one of the internal heating methods. 
Heating speed, efficiency, and reliability were used as objec-
tive functions, and a genetic algorithm was used as an opti-
mization algorithm.

2.1.2  Liquid cooling for battery

The primary cooling technique used to remove the last of the 
heat from EV batteries is liquid cooling. In liquid cooling, 
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heat from EV battery cells is transferred to a cooling plate, 
which removes heat from the battery via conduction. Liquid-
based micro channels are sometimes installed between the 
battery cells to help disperse the heat generated by the bat-
tery cells. Liquid coolant flows through a flow path inside 
a cooling plate, and convection is how the liquid coolant 
transfers heat to the final heat-removal component of the 
EV's radiator.

A typical cooling plate has a prismatic flow path, where 
the full geometry of the flow route can be described by only 
a few variables such as the flow channel's height and width. 
Various studies have demonstrated that relatively simple 
parametric optimization can be easily performed for the pris-
matic flow path. Figure 4 shows the shape of the prismatic 
flow path with parametric optimization applied. Jarrett et al. 
(2011, 2014) and Chen et al. (2019) put forth the optimiza-
tion technique by parametrically designing prismatic flow 
patterns, improving the prismatic flow path's form param-
eters, using characteristics of the cooling plate such as its 
maximum temperature or its standard variation in tempera-
ture as the objective function.

Parametric studies were also performed on other modified 
simple flow path structures. These studies employ a flow 
path with a complex shape, but they still use a shape that 
can be represented by several parameters. Deng et al. (2019a, 
2019b) proposed the bifurcating network flow path instead 
of the conventional prismatic cooling plate flow method. 
The classic prismatic flow path has a considerably simpler 
structure than the bifurcating network flow path, which has 
a lot more complicated structure. Deng et al. (2020) used 
NSGA-II to optimize the structure of a double-layered bifur-
cation channel. Xie et al. (2017a) suggested the optimiza-
tion of a battery module's primitive cooling plate, where the 

performance of several prismatic cooling plate structures 
was evaluated. Shang et al. (2019) put forth a technique for 
improving the bottom cooling plate construction of a battery 
module made up of several prismatic battery cells, where 
design variables included mass flow rate, intake temperature, 
and cooling plate width. Tang et al. (2019) suggested an 
approach for improving the bottom and side cooling plate 
constructions of a battery module made up of several pris-
matic battery cells.

Numerous research studies have focused on optimizing 
the flow channel of liquid cooling systems for EV batter-
ies while taking the battery's temperature distribution into 
account. In these studies, the objective function is typically 
the temperature of the battery cell rather than the cooling 
plate. Chen et al. (2022a) proposed an optimization method 
that combines the single battery cell and the cooling plate, 
while Wang et al. (2019a) suggested finding the optimal 
cooling plate shape by considering the temperature of the 
cylindrical battery cell.

Some liquid cooling systems use cooling plates with tiny 
channels, known as mini-channels, to improve battery cell 
heat dissipation. Li et al. (2019a) proposed an optimization 
approach for the prismatic flow path in the liquid-based 
mini-channel, while Wang et al. (2021b) presented an opti-
mization approach for a prismatic flow path with numerous 
inlets and outlets in a liquid-based micro channel. An et al. 
(2019) proposed a technique for improving the prismatic 
flow path of a mini-channel cooling plate connected to a bat-
tery cell, while Monika et al. (2021) suggested a technique 
for improving the mini-channel flow channel of a pouch type 
battery cell. These studies considered design factors such 
as mini-channel width, channel count, cooling water type, 
liquid flow rate, and cooling water temperature. Zhang et al. 

Fig. 4  Cooling plate shape optimized by parametric optimization (Jarrett and Kim 2011)



A survey on design optimization of battery electric vehicle components, systems, and management  Page 7 of 34    27 

(2022a) presented a cooling plate with micro-channels that 
significantly improves the plate’s ability to exchange heat by 
using interior fins in the micro-channel. Khan et al. (2022) 
proposed an innovative U-shaped lightweight liquid cool-
ing technique that removes heat through the side edge of a 
prismatic battery cell using a U-shaped mini-channel flow 
path, using a machine learning approach.

In contrast to parametric optimization, topology optimi-
zation can be used to construct a variety of flow pathways, 
enabling the design of variable and intricate flow path. Fig-
ure 5 shows the shape of the cooling plate with topology 
optimization applied. Mo et al. (2021) proposed a non-pris-
matic flow path through topology optimization, while Guo 
et al. (2022) put forth a strategy for optimizing a multi-input 
flow channel using topology optimization.

2.1.3  Air cooling for battery

The second most popular cooling technique for removing 
heat from batteries is air cooling. In this method, air travels 
through a tube and removes heat from the battery cells, with 
convection occurring between the air and the battery cell. 
The battery cells in the simple tube method are arranged in a 
straight tube, which is primarily used for cooling cylindrical 
battery cells. Cheng et al. (2020) proposed a multi-objective 
genetic optimization approach for a cylindrical battery cell 
module, using both the average battery cell temperature and 
the system's pressure drop as objective functions. Fan et al. 
(2021) suggested a cylindrical battery cell module specifi-
cally design for high-temperature environment.

The most common tube structure used in air cooling is 
the Z-type tube. The Z-type tube has an inlet and an outlet 
that are parallel to each other and have the same air flow 
direction, resulting in lower pressure drop than other tube 
structures. Chen et al. (2017) proposed a technique for maxi-
mizing the space between battery cells in a Z-type tube. 
Zhang et al. (2021b) suggested modifying the shape of the 
spoiler and attaching it to the Z-type tube to regulate airflow 
and reduce the average temperature and standard deviation 
of the battery cells.

Another traditional method of air cooling is the use of 
U-shaped tubes. The U-type tube has an inlet and an outlet 

that are parallel to each other and have opposite air flow 
directions. Chen et al. (2018a) proposed a technique for 
improving the design of the inlet and outlet passageways in 
U-type tubes. Li et al. (2019b) put forth a method for simul-
taneously adjusting the size of the inlet and outlet chan-
nels and the separations between battery cells in a U-type 
tube. Liao et al. (2019) adjusted the shape parameters of the 
U-type tube using the maximum value and standard devia-
tion of the battery temperature as the objective function. 
Additionally, experimental verification of the best designs 
was carried out in this research. Xie et al. (2017b) proposed 
a method of changing the angles of the air inlet and exit of 
a U-type tube and optimized these angles. Li et al. (2018b) 
suggested optimizing U-type tube air cooling by considering 
the size of the passages and the heat transfer from the battery 
cell to the cooling air. Wang et al. (2018, 2017a) created a 
multidisciplinary surrogate-based design optimization for 
battery air cooling, using surrogate models to simultane-
ously optimize the temperature differential between battery 
cells and battery volume.

Multi-inlet, multi-outlet air cooling structures have been 
studied as an alternative to traditional type tubes, with vari-
ous positions and numbers of inlets and outlets. Zhao et al. 
(2022a) and Wang et al. (2021c) compared different tube 
geometries with various orientations, locations, and num-
bers of inlets and outlets. Shi et al. (2021) suggested using 
deep learning to improve the design of a U-type tube with 
a sub exit. Liu and Zhang (2019) proposed a technique for 
optimizing the distance between battery cells in a J-type tube 
with two outlets. Zhang et al. (2021c) suggested a technique 
for optimizing the geometry of the outlet channel in a T-type 
tube with two exits. Zhang et al. (2022b, 2021d) proposed a 
technique for optimizing the design of multi-vent air cool-
ing with numerous outputs. Hwang et al. (2014) proposed a 
technique for improving the shape of a tube with top outputs 
and side inlets.

Air cooling is also applied to EV components other than 
the batteries, and sometimes, it is possible to optimize the 
system when the battery and other components are both 
cooled by air. Widyantara et al. (2021) proposed the opti-
mization of a system that integrates a prismatic battery cell 
air-cooling system and a cabin HVAC system. Table 1 is a 
table showing the design variables, constraints, and objec-
tive functions of the optimization problem in Sect. 2.1.

2.2  Battery charging management

While considering the battery, one of the major aspects to 
be optimized is the battery charge and discharge mechanism. 
Charging and discharging an EV or a fleet of EVs without 
any scheduling and optimization techniques in an uncoor-
dinated way can be detrimental for both the battery of the 
EV and the power grid. In the following, we will review 

Fig. 5  Cooling plate shape optimized by topology optimization (Mo 
et al. 2021)
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the literature on battery charging and wireless fast charging 
strategies. The electrical optimization of EV battery can be 
broadly classified as presented in Fig. 6.

2.2.1  Battery charging/discharging

2.2.1.1 Background to battery charging/discharging Opti-
mizing the battery charge and discharge mechanism is cru-
cial in managing EVs and their impact on the power grid. 
Uncoordinated charging and discharging can be detrimen-
tal to both the EV battery and the grid. El-Bayeh et  al. 
(2021) categorized charging and discharging strategies into 
two types: uncoordinated and coordinated. Uncoordinated 
charging refers to the practice of charging EVs without 
considering the demand on the electricity grid or the avail-
ability of renewable energy sources, leading to a strain on 
the grid and increased energy costs. Coordinated charging 
strategies take into account the grid demand and renewable 
energy availability, optimizing electricity use and reducing 
grid impact. Coordinated charging involves charging EVs 
during times of low energy cost, high availability of renew-
able energy, or when excess renewable energy is available.

Some of the main reasons why optimized and coordi-
nated charging/discharging strategies are important are listed 
below:

Range anxiety: One of the main concerns for EV drivers 
is the limited range of their vehicles in comparison to 
gasoline-powered cars. By carefully managing the charg-
ing and discharging of their battery, drivers can optimize 
the range of their EV and reduce the likelihood of running 
out of charge while driving.
Battery longevity: Lithium-ion batteries, which are com-
monly used in EVs, have a limited number of charge and 
discharge cycles before they start to degrade. By charging 
and discharging the battery at an optimal rate, drivers 
can extend the life of their battery and delay the need for 
costly replacements.
Energy cost: The cost of electricity can vary significantly 
depending on the time of day and the location. By charg-
ing their EV during times when electricity is less expen-
sive (such as at night), drivers can save money on their 
energy costs.
Grid stability: As more and more people adopt EVs, it is 
important to consider the impact on the electricity grid. 
Charging and discharging strategies that are coordinated 
with the grid can help to stabilize the demand for electric-
ity and reduce the risk of blackouts or other disruptions.

Uncoordinated charging/discharging strategies are fur-
ther classified intro three sub-categories: direct, delayed, 

Table 1  Design variables, constraints, and objective functions for optimization problem in Sect. 2.1

Section Design variables Constraints Objective functions

2.1.1 Shape of heat spreader with PCM, location 
of heat pipes

Mass of PCM, number of heat pipes Maximum temperature of battery cell, 
variance of temperature

2.1.2 Shape of flow path for cooling plate The shape of the flow path is constrained by 
the size of the cooling plate

Average temperature of cooling plate, 
variance of temperature, pressure drop 
of coolant

2.1.3 Shape of air passage, arrangement of bat-
tery cells

Distance between battery cells limited by 
overall tube size

Maximum temperature of battery cell, 
variance of temperature, pressure drop 
of air

Fig. 6  Overview of electrical 
optimization of EV battery
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and random. Direct charging means that an EV starts charg-
ing as soon as it is plugged in and stops either when it is 
disconnected or when the desired state of charge is reached. 
Delayed charging means that the charging of an EV is started 
during off-peak hours to help reduce the load on the power 
grid. Random charging is similar to direct charging, but the 
plug-in times of the EVs are randomly distributed.

Coordinated charging/discharging strategies can also be 
sub-categorized into two types: continuous and discrete, 
which are further classified as direct and delayed, similar 
to uncoordinated charging/discharging strategies. In con-
tinuous charging/discharging, an EV is charged continu-
ously without dividing the charging/discharging time into 
separate intervals. This strategy is typically used at home or 
at a charging station. In discrete charging/discharging, the 
charging time of an EV is divided into separate time inter-
vals (e.g. 15-min intervals). This strategy is typically used at 
charging stations. There is a lot of potential for optimization 
techniques to be used to find or design optimal charging/dis-
charging strategies. Figure 7 is a table summarizing charging 
strategies of EV battery.

2.2.1.2 Optimization in  battery charging/discharging EV 
charging and discharging scheduling optimization is crucial 
to alleviate the load on the power grid. Various studies have 
proposed methods to optimize the scheduling of EV charg-
ing and discharging. He et  al. (2012) developed a global 
and local scheduling optimization problem to minimize the 
total cost of charging and discharging all EVs within a day. 
Saber and Venayagamoorthy (2009) proposed a vehicle-
to-grid scheduling optimization problem using a balanced 
binary version of particle swarm optimization (PSO), where 
EVs are charged during off-peak hours and discharged dur-
ing peak load hours. Coordinated charging and discharg-
ing of EVs on the grid can flatten the voltage profile and 

reduce power transmission loss, as demonstrated by Singh 
et al. (2010). Chen et al. (2018b) proposed an EV grouping 
method to effectively meet each group’s charging demand 
and a coordinated optimization of EV charging and charging 
pile selection method to minimize the annual cost and power 
purchase cost. To handle the large number of EVs and their 
stochastic parameters, Zheng et  al. (2013) proposed an 
aggregation charging model that uses a genetic algorithm 
(GA) to obtain the stochastic feature parameter, which can 
help reduce power fluctuation caused by EV charging. Fang 
et  al. (2021) proposed a multi-objective comprehensive 
charging/discharging scheduling strategy for EVs based on 
improved PSO to enhance the peak regulating capacity of 
the power grid and reduce costs. Gu et al. (2021) proposed 
a decentralized discharging strategy in the vehicle-to-grid 
framework that uses a whale optimization algorithm, which 
maintains privacy by not exchanging critical information 
between the EV and EV aggregator.

Li et  al. (2021a) developed a battery pack model to 
describe the state parameters and interaction of a single bat-
tery in the pack. They proposed a multi-objective optimiza-
tion framework for an optimal charging strategy, targeting 
charging time, aging, and charging energy loss. Min et al. 
(2017) proposed an optimal battery charging strategy based 
on a multi-objective optimization framework to satisfy the 
EV’s charging demand for charging time, charge capacity, 
and energy loss. Lin et al. (2019) proposed a multi-objec-
tive optimal control problem using a physics-based battery 
model to investigate the charging strategies that optimally 
trade off temperature rise, charging time, and energy loss. 
Zhang et al. (2017) proposed a polarization-based charging 
time and temperature rise optimization strategy for lithium-
ion batteries, using a GA to find the optimal charging current 
profile. Li et al. (2020a) proposed an adaptive multistage 
constant current–constant voltage (MCCCV) strategy for 

Fig. 7  Overview of charging strategies of EV battery
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charging EVs and optimizing charging current using PSO. 
Zhang et al. (2014) analyzed the trade-off between charg-
ing loss and charging time through dynamic programming 
optimization algorithms. Hoke et al. (2014) proposed an 
optimization framework to minimize the cost of EV charg-
ing given variable electricity cost and battery degradation 
cost, using a simplified battery lifetime model. Du et al. 
(2018) proposed a multi-objective optimization framework 
to simultaneously optimize the heating time and energy con-
sumption while minimizing the battery capacity degradation. 
Corno and Pozzato (2019) proposed a framework for battery 
aging management that uses a Markov chain model to model 
driving behavior, reducing the need for battery pack replace-
ments and lowering maintenance costs. Wang et al. (2022a) 
proposed a framework that uses nonlinear model predictive 
control to acquire real-time charging current by solving non-
linear optimization problems. Wang et al. (2021d) proposed 
a dynamic programming method to minimize travel time 
and charging cost while determining the optimal amount 
of charged energy at each charging station available in the 
route. Chen et al. (2022b) formulated a multi-objective opti-
mization problem for battery charging mode, taking into 
account energy loss and charging criteria, and achieved the 
optimal solution using quadratic programming. Liu et al. 
(2005) proposed an ant colony optimization-based method 
to find the optimal rapid charging pattern for batteries.

Battery diagnostics and prognostics are essential aspects 
of battery management systems, particularly in applications 
where reliable and efficient battery performance is crucial. 
To ensure optimal battery performance and prevent unex-
pected failures, it is essential to implement effective diag-
nostic and prognostic techniques.

Dubarry et al. (2012) describe a modified equivalent cir-
cuit model (ECM) that emulates cell performance using two 
independent half-cell modules built from laboratory experi-
mental data. The model may simulate numerous "what-if" 
scenarios of battery deterioration modes using a synthetic 
approach based on specific electrode behavior, with the load-
ing ratio and the level of degradation in and between the two 
electrodes properly adjusted. Weddington et al. (2021) stud-
ies the fusion of prognostic results from several methodolo-
gies in order to achieve a more reliable remaining usable life 
(RUL) prediction, and presents experimental results of lith-
ium-ion batteries. The feature data is used to create models 
for the extended Kalman filter (EKF) and the particle filter 
(PF). The outputs of EKF and PF are then combined using 
Dempster-Shafer theory (DST). To implement multi-model 
prognostics and optimize performance, separate models for 
EKF and PF are used. Yan et al. (2017) offer an online model 
parameter adaptation technique, which is realized by a recur-
sive least square method with a forgetting factor, and used 
a Lebesgue-sampling-based fault diagnosis and prognosis 
(LS-FDP). The advantage of LS-FDP is that it requires less 

computation and accumulates less uncertainty. The accuracy 
and precision of LS-FDP, like other diagnostic and prognos-
tic techniques, are heavily influenced by the parameters and 
uncertainties in the diagnostic and prognostic models. Fur-
thermore, the model noises are adjusted using a short-term 
prediction and correction loop to manage the uncertainty of 
remaining usable life (RUL) prediction.

Wang et al. (2021e) propose a novel battery health esti-
mation framework based on an optimized multiple health 
indicators (MHIs) system using fuzzy comprehensive 
evaluation (FCE) and improved multivariate gray model 
(IMGM) to address the challenges of predicting and diag-
nosing state-of-health (SOH) of batteries due to the com-
plicated and unobservable electrochemical reaction inside 
the batteries. The Box-Cox transformation method is used 
to extract and optimize health indicators (HIs) such as par-
tial incremental capacity curve peak area (PICA) and par-
tial charge time period. Thermal runaway is a significant 
difficulty in the Li-ion battery area due to its unpredict-
able and irreversible nature, which can result in fires and 
explosions, endangering public safety. As a result, ther-
mal runaway prognosis and diagnosis are important study 
areas. Tran et al. (2022) aim to efficiently investigate cur-
rent thermal runaway prognosis and diagnosis algorithms 
that aid in modeling, prediction, detection, and can aid in 
the development of prevention and mitigation measures to 
assure the battery system's safety.

Recent advancements in “Big Data” analytics and related 
statistical/computational tools raised interest in data-driven 
battery health estimation. Long et al. (2019) proposed an 
improved LSTM prediction approach for estimating lithium-
ion battery RUL. Li et al. (2022) suggested a data-driven 
parameter identification framework for electrochemical mod-
els of lithium-ion batteries in real-world operations using 
artificial intelligence, specifically the cuckoo search method. 
Only current and voltage data are utilized as input for the 
multi-objective global optimization of parameters, which 
takes into account both voltage error between the model and 
the battery as well as relative capacity error between two 
electrodes. Bayesian approaches can be applied to a wide 
variety of study topics, making them one of the most appeal-
ing tools in prognostics and health management. Ouyang 
et al. (2023) evaluate and summarize commonly used online 
power battery health prognosis approaches using models and 
Bayesian theory. The advantages and disadvantages of the 
most often used empirical models, electrochemical models, 
equivalent circuit models, and black box models, as well as 
their current research status, for battery modeling were sum-
marized. The estimate approaches based on Bayesian theory, 
including Gaussian filters, Monte Carlo filters, and Bayesian 
optimization methods, are extensively summarized for state 
estimation, and the merits and limitations of these methods 
in battery health diagnosis were discussed.
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2.2.2  Optimization in battery swapping technique

Battery swapping is a technique that enables the replacement 
of depleted EV batteries with fully charged ones quickly 
and easily, thus addressing the issue of long charging times 
for EVs. One of the main benefits of this technique is much 
faster charging times compared to traditional EV charging 
methods. It is particularly useful for commercial fleets or 
ride-sharing companies, as it reduces the amount of time 
vehicles need to be taken out of service for charging, and 
for long-distance travel, as it allows drivers to swap out their 
batteries at strategic locations along their route. Battery 
swapping can potentially reduce the overall cost of owning 
an EV as the owner does not have to purchase a new bat-
tery and can simply pay for the cost of swapping out their 
depleted battery. This also extends the life of the battery, as 
there is no degradation of the battery over time.

Rao et al. (2015) proposed an optimization charging 
mode to determine the impacts of battery swapping behavior 
on the power grid and generation cost. Infante et al. (2019) 
proposed an optimal recourse strategy to coordinate the 
planning and operation of battery swapping stations, deal-
ing with the stochastic parameters of the EV station. Yang 
et al. (2019a) proposed a shared battery station model to 
maximize the total revenue by controlling the charging, dis-
charging, sleeping, and swapping of batteries. They used a 
GA is used to validate the optimization model. Yang et al. 
(2020) proposed an aggregated shared battery station model 
and used GA to optimize the charging, discharging, and 
sleeping process of the batteries to maximize the operat-
ing revenue. Sun et al. (2017) proposed an optimal charging 
operation problem based on a queueing network model as a 
constrained Markov decision process for battery swapping 
and charging station to minimize the charging operation 
cost and ensure quality service. To deal with the stochastic 
nonlinear dynamics of a battery swapping station operation, 
Wang et al. (2020a) proposed a deep Q-learning network that 
can perform optimal scheduling. Considering the charging 
demand uncertainty and electricity prices, Schneider et al. 
(2018) developed an algorithm based on dynamic program-
ming and Monte Carlo sampling to minimize the operating 
cost of a battery swap station in a network where lateral 
transshipments are allowed.

2.2.3  Wireless/fast charging system

2.2.3.1 Background to  wireless charging systems Cur-
rently, EVs are mostly charged through traditional plug-in 
methods using electric cables. However, plug-in chang-
ing systems have some disadvantages, such as the risk of 
sparking over plugging and unplugging the vehicle, limit-
ing their use in certain areas like gas stations and airports. 
In contrast, wireless electric vehicle charging systems offer 

several advantages over traditional wired charging systems. 
For example, they allow for the convenience of charging 
by simply parking the EV over a charging pad, without the 
need to physically connect a charging cable. This makes the 
charging process more convenient for drivers and reduces 
the risk of damage to the charging ports. Additionally, 
wireless charging eliminates the need for drivers to handle 
charging cables, which can reduce the risk of electric sparks 
and shocks and increase safety. Since wireless charging sys-
tems do not require physical connections, they are less prone 
to wear and tear, improving the reliability of the charging 
system and reducing maintenance costs. Moreover, wire-
less charging systems can be installed in various locations, 
such as public parking garages and streets, making it easier 
for drivers to find charging locations. Additionally, wireless 
charging opens up new opportunities for dynamic charging, 
which is charging while driving. This eliminates the range 
limitations of EVs and reduces the requirement for higher 
battery capacity.

2.2.3.2 Optimization in  wireless charging systems The 
need for wireless charging of EVs has led to a number of 
review papers in recent years. Kalwar et al. (2015) provided 
a review of the analysis and characteristics of inductively 
coupled power transfer (ICPT) for EV charging. Ahmad 
et  al. (2017) provided a comparative study of conductive 
charging and wireless charging, and provided a detailed 
description of static, dynamic, and quasi-dynamic wire-
less charging systems. Panchal et  al. (2018) provided a 
basic overview of the wireless charging system for EVs, 
with applications in both stationary and dynamic situations. 
They demonstrated different core and ferrite shapes used in 
wireless charging pad design. Machura et  al. (2019) pro-
vided an in-depth review of various technologies and com-
ponents used in wireless charging systems, and discussed 
environmental impacts and cost analysis in detail. Meligy 
et  al. (2021) focused on maximizing total energy transfer 
while meeting budget constraints using traffic simulations 
and nonlinear optimization methods. The deployment opti-
mization problem aims to determine the best locations and 
lengths of dynamic wireless charging lanes at each location. 
Ko and Jang (2013) developed a mathematical model and 
applied an optimization technique utilizing PSO to effi-
ciently distribute wireless power transmitters and determine 
the necessary battery capacity for an online EV-based mass 
transportation system. Majhi et al. (2022) proposed a mixed 
integer optimization framework to minimize the cost for 
optimal placement of dynamic wireless charging facilities 
on a road network while maintaining a sustainable state of 
charge level.

Wireless charging systems for EVs use electromagnetic 
induction to transfer power from a charging station to the 
EV battery. The charging station includes a transmitter coil 
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connected to an alternating current power source, which 
generates a changing magnetic field. This magnetic field is 
detected by a receiver coil in the EV, which is connected to 
the battery. The changing magnetic field in the receiver coil 
induces an alternating current that charges the battery. Sig-
nificant research has been conducted on the design, analy-
sis, and optimization of wireless charging systems for EVs. 
Hasanzadeh et al. (2012) proposed a circular coil config-
uration-based wireless charging system, in which the coil 
dimensions are optimized. An analytical model of the sys-
tem is developed to find the optimal dimensions. Tan et al. 
(2019) proposed a dimension reduction-based fast multi-
objective optimization of coil design in wireless charging 
systems, considering human electromagnetic safety as one 
of the optimization objectives of coil design. They used the 
NSGA-II algorithm to optimize the coil design.

2.2.3.3 Fast charging optimization The adoption of EVs 
heavily depends on the ability to quickly charge their lith-
ium-ion batteries. Very high power charging infrastructure 
is already being implemented in numerous places through 
collaboration between public and commercial entities. Bat-
tery-related research is being driven by this deployment to 
make lithium-ion batteries accept higher charging power 
and significantly shorten charging times. Mathieu et  al. 
(2021) suggested a numerical optimization of fast charging 
techniques and how they affect battery cycle life. They for-
mulated an optimization problem based on a highly coupled 
electro-thermal model to specify the parameters of a multi-
stage constant current charging technique, which can shorten 
charging times and/or slow down deterioration while main-
taining a long cycle life. Zhao et al. (2022b) explored the 
kinetic factors that prevent lithium-ion batteries from charg-
ing quickly and provided a summary of research methods 
for improving interfaces and electrodes. Jiang et al. (2022) 
proposed a fast-charging Bayesian optimization approach 
that explicitly contains limitations that prevent degradation. 
They evaluated three different types of acquisition func-
tions (expected improvement, probability of improvement, 
and lower confidence bound) for exploring and utilizing the 
parameter space of charging protocols and showed that the 

probability of improvement acquisition function has lower 
mean and best minimum charging times.

Thakur et al. (2023) thoroughly studied the battery ther-
mal management system for fast charging application. Due 
to its weak heat transfer coefficient and reduced thermal con-
ductivity, air-cooled BTMS is unsuitable for quick charg-
ing. PCMs with solid–liquid phase transitions are favored 
for thermal control, however secondary heat dissipation is 
required for longevity. Future research will focus on hybrid 
PCM-based BTMS, which combines liquid-based cooling 
plates with PCM for high heat dissipation rates. Inconsisten-
cies in battery kinds, dimensions, capacity, and operational 
conditions make determining their value difficult. To build 
innovative battery-based systems that combine refrigerants, 
TE coolers, and nanofluids, more research is required. This 
hybrid combination provides a small unit with excellent heat 
dissipation and safety. Some gaps were observed, and addi-
tional research is needed to better understand how battery 
cells/packs/modules react to the fast-charging/discharging 
cycle, as well as how an adjustable BTMS can be proposed 
to respond to thermal load based on driving requirements.

In summary, this section covered the various charging 
and discharging strategies in the literature, their benefits and 
drawbacks, and their impact on the grid, operational cost, 
and battery health. The optimization constraints of charging/
discharging strategies as discussed in the literature were also 
identified. The status of wireless charging for fast charging 
and associated research and challenges were discussed as 
well. Table 2 is a table showing the design variables, con-
straints, and objective functions of the optimization problem 
in Sect. 2.2.

2.3  Mechanical optimization of battery

Figure 8 illustrates an overview of the mechanical optimi-
zation of EV batteries. In addition to electrical and thermal 
stability, EV batteries also require mechanical stability to 
withstand loads, collisions, and vibrations. Battery packs 
should be lightweight, durable, resistant to vibrations, and 
cost-effective to address these challenges. Arora et al. (2016) 
described the fundamental design of packaging for EV bat-
tery packs used in EV.

Table 2  Design variables, constraints, and objective functions for optimization problem in Sect. 2.2

Section Design variables Constraints Objective functions

2.2.1 Charging current, charging power and 
charging time slot

Battery parameters, internal temperature, 
charge/discharge power, grid load, SoC

Minimize operating cost, total charging 
time, energy loss

2.2.2 Peak load, state of battery while charging, 
discharging or swapping

Number of batteries in a station, battery 
characteristics, Grid reliability, SoC

Minimize charging cost, peak shaving, 
valley filling, swap cost

2.2.3 Dimensions of transmitter and receiver 
coils, alignment and assembly parameters, 
location and length of charging lanes

Battery capacity, charging duration, cell 
temperature, limit on battery degradation, 
SoC level

Maximum energy transfer, efficiency and 
minimize infrastructure cost and energy 
loses
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2.3.1  Battery pack structure optimization

Research on the durability of battery packs focuses on the 
maximum deformation of the battery pack for a given stress. 
Epp et al. (2022) suggested optimizing the placement of 
prismatic battery cells to improve the structural integrity of 
the battery module. Kukreja et al. (2016) presented struc-
tural optimization for cylindrical battery cell battery packs to 
increase structural stability. Li et al. (2020) proposed a radial 
basis function neural network-based multi-objective battery 
pack optimization, using the battery pack's mass and maxi-
mum deformation as design variables. Xue et al. (2014) sug-
gested a battery pack structural optimization by combining 
gradient-free optimization and gradient-based optimization, 
using the battery pack's mass, volume, and price as objec-
tive functions. Li et al. (2020b) proposed multi-objective 
design optimization for structural battery pack optimiza-
tion, considering materials, state of health prediction, intel-
ligent configuration, thermal design, mechanical safety, and 
recycling of materials and packs. Pelletier et al. (2020) sug-
gested multi-objective optimization to improve the battery 
pack construction, using the battery pack's mass, maximum 
operating temperature, and price as objective functions. Hao 
et al. (2017) took driver safety, battery module structural sta-
bility, and vehicle roof strength into account in their optimi-
zation. There is also research on optimization under uncer-
tainties. Liu et al. (2018) proposed a method to optimize 
the structure of the battery box under material uncertainty. 
The particle swarm optimization algorithm was used as an 
optimization method.

Instead of subjecting the EV battery pack to a fixed stress, 
there have been attempts to apply external forces in the form 
of pulses to more accurately simulate real-world crash sce-
narios. Qiao et al. (2021) proposed an improved structural 
design for the battery pact that reduces distortion in the 

event of a frontal collision. Zhao et al. (2013) suggested 
optimizing the battery pack’s structure for crashworthiness 
while considering crash scenarios. Zhang et al. (2020a) pro-
posed optimizing the battery pack’s structure with crashwor-
thiness in mind using multi-load topology optimization. Li 
et al. (2018c) suggested using resilient design optimization 
to optimize the battery pack's structure and demonstrated 
that adaptive significance sampling is more effective than 
simple Monte Carlo sampling for battery pack design. Zhang 
et al. (2019) proposed using NSGA II to optimize the bat-
tery pack's structure for crashworthiness, with the maximal 
equivalent stress and resonance frequency of the battery 
pack serving as the objective function.

Some studies aim to use the natural frequency of the 
battery pack as the objective function, which enables the 
optimization of the vibration resistance of the battery pack. 
These studies typically aim to maximize the minimum 
natural frequency. Liu et al. (Liu et al. 2022) proposed a 
multi-objective structural optimization approach for battery 
pack structural stability, with the objective function being 
the battery pack's stress and resonance reactivity. Lin et al. 
(Lin et al. 2016) proposed a multi-objective PSO method for 
optimizing the structural design of battery packs, with the 
objective functions including the battery pack's mass and 
the restraint of the fundamental frequency. Shui et al. (2018) 
suggested the used of the NSGA II method for optimizing 
the battery pack structure, with the objective functions being 
the battery pack's mass, lowest natural frequency, and maxi-
mum deformation. Niu et al. (2019) proposed optimizing the 
battery pack structure to improve linked electrochemical-
mechanical performance, with the objective functions being 
the maximum deformation, the lowest intrinsic frequency, 
and the battery pack's mass. Pal et al. (2020) suggested using 
the cold spray technique to optimize the battery pack struc-
ture, with the objective functions being the maximum defor-
mation and the lowest natural frequency of the battery pack.

2.3.2  Battery cell protector optimization

Research has also been conducted on protecting battery cells 
from external influences. These studies focus on strength-
ening the protector that shields battery cells. Biharta et al. 
(2022) proposed optimizing the design of a double-U struc-
ture protector to protect pouch battery cells from ground 
impact loads. Carakapurwa et al. (2022) suggested opti-
mizing the protector shape of an auxetic structure used to 
protect battery cells using machine learning. Huang et al. 
(2021) proposed optimizing an X-shaped pattern protec-
tor to protect cylindrical battery cells, and Nasrullah et al. 
(2021) employed a cellular twisted-octet lattice structure 
protector for structural optimization of battery cell protec-
tors. Shuai et al. (2020) proposed optimizing the honeycomb 
design of a battery pack made up of cylindrical battery cells. 

Fig. 8  Overview of mechanical optimization of EV batteries
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Overall, various types of protectors have been studied for the 
mechanical stability of battery cells. Table 3 is a table show-
ing the design variables, constraints, and objective functions 
of the optimization problem in Sect. 2.3.

2.4  Summary

In summary, Sect. 2.1 covered various thermal management 
strategies. Thermal optimization is crucial for safe and effi-
cient operation, requiring the management of heat generated 
during energy conversion. Various techniques are used to 
regulate battery cell temperature, such as PCM, heat pipes, 
liquid cooling, and air cooling. Parametric optimization, 
topology optimization, and multidisciplinary design opti-
mization are among the optimization techniques used for 
these methods.

Section 2.2 covered the various charging and discharging 
strategies in the literature to optimize battery performance, 
extend battery life, and ensure safe and efficient operation. 
Strategies such as constant current, constant voltage, fast 
charging, load shifting and peak shaving among others along 
with the different optimization techniques of charging/dis-
charging strategies as discussed in the literature were also 
identified. The benefits and drawbacks of these strategies 
depends on the specific application requirements, battery 
chemistry, and trade-offs between charging speed, energy 
efficiency, and battery health considerations. Well-coor-
dinated charging strategies offer controlled charging, cell 
balancing, reduced charging time along with grid stability. 
Impact on the operational cost was also discussed.

Optimization in battery swapping techniques were dis-
cussed which focuses on enhancing the efficiency, cost-
effectiveness, and user experience of the swapping process. 
Strategies to locate swapping stations, optimize charging and 
discharging rates, select suitable batteries, manage queues, 
estimate battery health, integrate with the grid, and ensure 
system reliability were discussed from the literature.

Optimization in wireless and fast charging strategies 
enhance charging efficiency, alignment, dynamic power 
control, foreign object detection, dynamic current and volt-
age control, temperature management were also discussed 
from the literature.

Section 2.3 covered various mechanical optimization 
technique. Mechanical optimization ensures battery packs 
are lightweight, collision-resistant, vibration-tolerant, and 
cost-effective. Resilient design optimization, structural opti-
mization, and protector optimization are among the optimi-
zation techniques used to improve the mechanical stability 
of battery modules and packs.

3  Optimization of other components in EV

While battery-related aspects are the most researched in 
EVs, other components such as powertrain and motors, 
among others, also require changes and customization. This 
section discusses literature focused on the optimization of 
such components. An overview of the optimization of main 
components in EVs is depicted in Fig. 9.

3.1  Powertrain

The optimization of powertrain design is crucial for achiev-
ing energy efficiency and emission reduction in EVs. Fig-
ure 10 shows the powertrain architecture of an EV. Power-
train design optimization studies include three main areas: 
(i) powertrain configuration optimization to determine the 
best powertrain topology or architecture, (ii) powertrain 
parameter optimization to determine the size and types of 
components, and (iii) control system optimization to opti-
mize the control algorithm and energy management system.

Table 3  Design variables, constraints, and objective functions for optimization problem in Sect. 2.3

Section Design variables Constraints Objective functions

2.3.1 Shape of battery pack Input stress for battery 
pack, magnitude of the 
external force

Maximum deformation, mass, volume, price, crashworthiness 
and resonance resistance of battery pack

2.3.2 Shape of battery cell protector, pat-
terns for cell protector

Input stress for cell protec-
tor, magnitude of the 
external force

Mechanical stability of battery cells, strength of cell protector

Fig. 9  Overview of optimization of other components in EV
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3.1.1  Powertrain configuration optimization

Powertrain architecture has a significant impact on fuel 
efficiency. Bayrak et al. (Bayrak et al. 2014) proposed a 
mathematical algorithm to automatically generate all pos-
sible topologies for a fixed set of powertrain components. 
However, the proposed method resulted in a large number 
of possible topologies, requiring substantial computational 
power. Various methods have been proposed to overcome 
this issue. For instance, Silvas et al. (2015) proposed a cost-
based framework to identify feasible topologies by analyzing 
all possible topologies for a given set of fixed components. 
The resulting design space was reduced using a constraint 
logic program based on functionality and cost principles.

3.1.2  Powertrain parameter optimization

Powertrain parameter optimization involves optimizing vari-
ous parameters such as the size and types of the components, 
transmission ratios, and drive motor parameters, to enhance 
the EV in terms of cost, fuel consumption, performance, 
and emissions. Parameters optimization studies can be clas-
sified into two broad categories: single-objective and multi-
objective. In single-objective studies, researchers such as 
Wang et al. (2017b) and Coronado (2018) optimized for 
powertrain efficiency, Dong et al. (2018) for driving cycle 
range, Borthakur and Subramanian (2019) for fuel consump-
tion, and Zhou et al. (2022a) for energy consumption. In 
multi-objective studies, researchers such as Wang and Sun 
(2014) and Wang et al. (2020b) optimized for driving range 
and the time required to accelerate the vehicle from 0 to 
100 km/h, while Mozaffari et al. (2016) optimized for total 
traveling cost and the time required to accelerate the vehicle 
from 0 to 100 km/h. Wang et al. (2019b) used the electric 
energy consumption under the charge depleting stage, the 
fuel consumption under the sustaining stage, and the time 

required to accelerate the vehicle from o to 120 km/h as their 
objective functions. Other studies, such as those by Zhang 
et al. (2020b), Li et al. (2020c), Helbing et al. (2021), Chen 
et al. (2022c), da Silva et al. (2022), Eckert et al. (2022), 
Lee and Shim (2022), Nguyen et al. (2022), and Zhou et al. 
(2022a, b), used different combinations of parameters such 
as fuel economy, system durability, power cost, low speed 
rotor torque, driving autonomy, battery life span, storage 
system energy, hydrogen consumption, system cost, and 
performance degradation, as their objective functions to be 
optimized.

3.1.3  Powertrain control system optimization

In powertrain control system optimization studies, the goal 
is to attain optimal energy management by implementing a 
control strategy that regulates the operation of the power-
train of EV. The control strategy is usually implemented in 
the vehicle central controller and adjusts parameters such 
as torque and speed to meet the driver’s demand for trac-
tion power while sustaining the battery charge and optimiz-
ing drivetrain efficiency, fuel consumption, and emissions. 
Energy management (control) strategies for EVs can be clas-
sified into three categories: rule-based, optimization-based, 
and learning-based, as presented in Fig. 11, a modified ver-
sion of the classification given in Salmasi (2007). The rep-
resentation, generation, and optimization methodology of 
hybrid EV powertrain architectures were discussed in Zhou 
et al. (2020), and a comprehensive overview of the genera-
tion, screening, and optimization of powertrain configura-
tions for power-split hybrid EVs can be found in Zhao et al. 
(2021).

Rule-based control strategies use heuristics, intuition, 
human expertise or mathematical models to provide real-
time supervisory control of the powertrain. Al-aawar et al. 
(2014) used adaptive neural fuzzy inference system, Lawler 

Fig. 10  Powertrain architecture 
for an EV
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et al. (2011) used a rule-based supervisory control, Miranda 
et al. (2022) used conventional fuzzy logic control for energy 
management of EVs.

Optimization-based control strategies aim to minimize 
a cost function, usually representing fuel consumption or 
emissions. Ahn et al. (2008) used both equivalent fuel con-
sumption (EFC) minimization and dynamic programming, 
Yamamoto et al. (2020) used EFC minimization, Kargar 
et al. (2022) used approximate dynamic programming to 
generate an energy management strategy for EVs.

Learning-based control strategies use experimental sen-
sory data to develop learners, such as neural network, to reg-
ulate the powertrain’s operation. Liessner et al. (2019) used 
deep reinforcement learning (DRL) to optimize controls for 
real stochastic vehicle use, and Bayesian optimization that 
sequentially operates with the DRL was performed to select 
suitable hardware configurations. Zhou et al. (2022a, b) and 
Tang et al. (2022) used deep deterministic policy gradient 
strategy for powertrain energy management for HEVs. Du 
et al. (2022) developed a novel DRL control framework for 
the energy management strategy of the series hybrid electric 
tracked vehicle (SHETV). Wang et al. (2022b) proposed a 
DRL-based energy management system for hybrid electric 
vehicle integrated with waste heat recovery system (organic 
Rankine cycle). Zhou et al. (2022c) constructed the vehi-
cle power model of HEV and Markov probability transfer 
model, and then designed the energy control strategy based 
on reinforcement learning, and finally compared it with the 
energy control strategy based on proportional integral deriv-
ative. Yan et al. (2023) addressed the energy optimization 
control issue for hybrid electric vehicles using three differ-
ent algorithms, namely Q-learning, deep Q network (DQN), 
and deep deterministic policy gradient (DDPG) algorithms, 
and found the superiority of the DDPG algorithm over 

Q-learning and DQN algorithms in hybrid electric vehicles. 
B. A review of reinforcement learning based energy man-
agement systems for electrified powertrains can be found in 
Ganesh and Xu (2022).

3.2  Motor

The commonly used types of electric motors used in EVs 
include (1) series DC motors, (2) brushless DC motors, (3) 
switched reluctance motors, (4) induction motors (asyn-
chronous motors), and (5) permanent magnet synchronous 
motors. The series DC motor was the most widely used 
motor for traction application in the early 1900s due to its 
high starting torque, but it is not commonly used in recent 
applications. Brushless DC motors were also used as traction 
motors in early applications due to their various advantages, 
such as their basic topology, wide speed range, light weight, 
and noise-free operation. However, this motor type is also 
not commonly used in recent applications. Table 4 is a table 
summarizing the advantages and disadvantages of various 
types of electric motors. Table 5 is a table showing the types 
of EVs in the market from 2010 to 2020 and the type and 
power of the motors used.

Motor diagnostics and prognostics are crucial aspects of 
condition monitoring and maintenance practices for vari-
ous machines and equipment that incorporate motors. Motor 
diagnostics refers to the process of monitoring and analyz-
ing the operational data of a motor to identify its current 
state and detect any abnormalities or faults. Various methods 
can be employed for motor diagnostics, including vibration 
analysis, current analysis, temperature monitoring, acous-
tic analysis, oil analysis and infrared thermography. Motor 
prognostics goes beyond diagnostics and involves predict-
ing the future behavior and remaining useful life of a motor 

Fig. 11  Classification of 
powertrain energy management 
strategies for electric vehicles
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based on its current condition and performance data. Com-
mon approaches for motor prognostics include: statistical 
analysis, machine learning algorithms, physics-based mod-
els, and prognostic health management systems.

Various condition monitoring solutions for electric 
motors have been implemented, including anomaly detec-
tion and diagnostics solutions such as vibration and stator 
current based fault detection (Liang et al. 2018), stator cur-
rent based electro-magnetic simulation model for winding 
insulation diagnostics (Liu et al. 2019), rotating noise based 
stator and bearing fault diagnostics (Nakamura et al. 2021), 
or vibration and acoustic emission data based Bayesian net-
work solution for PM synchronous motor fault diagnostics 
(Cai et al. 2021).

Prognostics solutions that have been presented include: 
digital twin and prognostics framework based on artificial 
neural networks (ANN) and fuzzy logic for PM synchronous 
motor operated in electric vehicles (Venkatesan et al. 2019), 
and the two-stage prognostics framework which connects 
Bayesian networks and autoregressive moving average mod-
els to improve the prognostics prediction accuracy (Cai et al. 
2022). Generally, SVM, ANN and deep learning performs 
well in multi-dimensional and continuous data and k-NN, 
decision trees and Naive Bayes works well for discrete data 
(Kotsiantis et al. 2006). Current diagnostic systems are 
dependent on feature selection, feature extraction, data col-
lection and so many processes, and deep learning has the 
potential to develop a complete diagnostic system and needs 
more attention.

3.2.1  Switched reluctance (SR) motors

In a couple of recent studies, SR motors have been used as 
traction motors because of their smaller energy consump-
tion compared to other motor types. Sun et al. (2021) con-
ducted multi-physics design optimization of an SR motor for 
an EV application. The geometric parameters of the motor 

Table 4  Advantages and disadvantages of electric motors

Motor type Advantages Disadvantages

Series DC motors High starting torque, basic topology, wide 
speed range, light weight, and noise-free 
operation

Speed control challenge, low efficiency, require-
ment of frequent maintenance

Brushless DC motors Low maintenance cost, long lifespan, high 
power density, high torque density, smooth 
operation at high speeds

High cost, low torque at high RPM, vibrations at 
low speeds, complex wiring, complex control

Switched reluctance (SR) motors Smaller energy consumption, simple construc-
tion, high efficiency, robustness, high torque 
density

Complex control, high levels of acoustic noise 
and vibration, torque ripple, high manufac-
turing cost, low power factor, limited speed 
range, high manufacturing cost

Induction motors (asynchronous motors) High starting torque, ability to brake at very 
low speeds, cheaper cost, less maintenance 
requirement, high durability

Low power factor at low loads, complex control, 
requires some auxiliary for stating

Permanent magnet (PM) synchronous motors High efficiency, high power density, precise 
speed control, high starting torque, regen-
erative braking, reduced maintenance, low 
torque ripple

High initial cost, limited high-temperature 
operation, demagnetization risk, complex 
control

Table 5  Example of EVs on the market from 2010 to 2020

EV model Power(kW) Motor Year

Mahindra e2o Plus 19–30 1M 2016
Renault Kangoo ZE 44 PMSM 2011
Mitsubishi I-MiEV 47 PM 2010
Volkswagen E-up 60 PMSM 2019
Renault Zoe 65 PMSM 2012
LandRover 70 SRM 2013
Renault Fluence
Z.E. 70 PMSM 2012
Nissan Leaf 80 PMSM 2010
BJEV EC5 80 PMSM 2019
Hyundai Ioniq
Electric 88 PMSM 2016
Hyundai Kona 80-150 PMSM 2018
BYD E6 90 PMSM 2014
BMW i3 125 PMSM 2013
Xpeng G3 139 PMSM 2018
Mercedes-Benz
EQC 150*2 IM 2019
BJEV EU5 160 PMSM 2018
Tesla Model X 193-375 IM 2015
Tesla Model 3 211-340 PMSM 2020
Tesla Model S 235-568 IM 2012
NIO EC6 320 PMSM 2020
NIO ES6 320 PMSM 2020
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were optimized for minimum stator and coil temperatures, 
maximum output torque, minimum torque ripple, and mini-
mum total loss. Patel et al. (2021) performed design and 
optimization of a slotted stator SR motor for EV applica-
tions. They modified the conventional design by slotting the 
stator tooth with different depths from the inner periphery, 
and the geometry of the modified motor was optimized for 
maximum torque output.

3.2.2  Induction motors (IM)

The three-phase IM is a better option compared to the previ-
ously mentioned motor types as a traction motor due to its 
high starting torque under various loads and its ability to 
brake at very low speeds. Zhang et al. (1996) optimized an 
EV induction motor using sequential unconstrained minimi-
zation technique. The core axial length, winding conductor 
diameter, coil conductor diameter, end ring width and height 
were optimized for minimum motor active material length. 
Faiz and Sharifian (2006) optimized a squirrel-cage three-
phase IM for an EV application. The number of poles, rated 
base speed and slot shapes were optimized for maximum 
efficiency. Demir and Aküner (2018) optimized an in-wheel 
IM for an EV application. Various motor parameters includ-
ing the number of poles, input voltage, frequency, stator 
inner and outer diameters, engine length, numbers of stator 
grooves, conductors and wire cores, wire and shaft diam-
eter, ring height and width were optimized for maximum 
efficiency and maximum output torque. Akhtar and Behera 
(2019) designed a squirrel cage IM for application in an 
EV. The stator and rotor slot dimensions were optimized 
for maximum efficiency, maximum breakdown torque, and 
maximum power factor.

3.2.3  Permanent magnet (PM) synchronous motors

Finally, the PM motor is currently the most attractive option 
as a traction motor because of its wide speed interval, high 
maximum accessible power, and high efficiency. Depend-
ing on how magnets are attached to the rotor and the design 
of the rotor, the PM motor can be classified into two types: 
surface-mounted permanent magnet (SPM) motor and inte-
rior permanent magnet (IPM) motor. SPM motor mounts 
all magnet pieces on the surface, and IPM motor places 
magnets inside the rotor. Sun et al. (2019) performed the 
design optimization of an SPM motor with concentrated 
windings for EV applications. Various parameters, including 
slot-pole number combination, machine inductance, axial 
length, and number of turns, were optimized to minimize the 
total energy losses over the driving cycle. Ahn et al. (2014) 
designed an IPM motor as part of a battery EV propulsion 
system. The motor armature coil turns, stack length, opera-
tion DC voltage, and final drive ratio were optimized for 

minimum charge depletion and minimum acceleration time 
from 0 to 60 mi/h. Hawkins et al. (2014) optimized the IPM 
electric motor of the General Motors 1ET35 drive unit used 
in the 2014 Chevrolet Spark EV. Geometric parameters, such 
as the shape and placement of the magnet barriers, air slots 
in rotors, and rotor outer surface profile, were optimized for 
maximum efficiency and minimum torque ripple. There are 
also studies that compare different types of PM motors. Sari-
giannidis et al. (2016) considered both surface-mounted and 
interior type PM motors and optimized both types of motors. 
The geometric parameters (e.g., PM width and angle, stator 
tooth width and length, air-gap diameter) were optimized to 
minimize a cost function that includes the mean produced 
electromagnetic torque, motor power loss, total harmonic 
distortion, and torque ripple.

Torque generation capability and vibration characteris-
tics are also important measures for motor optimization. Ma 
et al. (2018) performed design and optimization of an IPM 
motor to improve its flux weakening capability and reduce 
vibration. The PM total width per pole, the width of ducts, 
the pole embrace, distance from duct bottom to the shaft 
surface, and the minimum distance between side magnets 
were optimized for the minimum value of torque ripple to 
the average torque. Gu et al. (2019) optimized an axial flux 
SPM motor for an EV application. They optimized the rated 
torque and speed, number of poles and phases, rated volt-
age, and number of stator segments for maximum torque 
density and maximum torque ripple. Sun et al. (2019) per-
formed design optimization of an SPM synchronous motor 
for a campus patrol EV. The PM structure, air-gap length 
and stator core geometry were optimized for maximum out-
put torque, minimum cogging torque, and minimum PM 
eddy loss. Bhagubai et al. (2020) optimized a spoke-type 
IPM motor to be used in a Formula Student electric car. 
They optimized the geometric parameters, such as the rotor 
radius, shaft radius, permanent magnet width and length, 
stator tooth width and length, outer ring width, and air-gap 
size, for maximum efficiency and maximum output torque. 
You (2020) performed shape optimization of an IPM syn-
chronous motor for an EV application. The angle between 
the V-shaped permanent magnets and the rib thickness of the 
rotor were optimized for maximum average torque and mini-
mum total harmonic distortion of the back electromotive 
force. Lee and Lim (2021) optimized an IPM motor for an 
EV application. The geometric parameters of the motor, such 
as stator inner and outer diameters, air-gap and stack lengths, 
as well as other parameters such as the number of poles 
and PM remanence, were optimized for maximum torque 
density, maximum efficiency, and minimum torque ripple.

Efficiency and temperature rise were also among the 
important considerations in design optimization. Wu et al. 
(2021) optimized an IPM synchronous motor based on road 
condition of the EV. The geometric parameters including 
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outer diameter, motor length, magnet thickness and width, 
and air-gap length were optimized for maximum efficiency 
and minimum weight. Zhu et al. (2021b) performed cooling 
system design optimization of a high-power density IPM 
traction motor for EV applications. The cooling structural 
parameters were optimized to reduce the steady-state tem-
perature rise of the motor. Zhu et al. (2022) optimized the 
NVH (noise, vibration, and harshness) performance of an 
IPM motor for an EV application. Geometric parameters 
such as slot depth and width, and the angle between two slots 
were optimized to minimize the three orders of electromag-
netic force. A summary of design optimization studies on 
PM synchronous motors for EV applications is presented 
in Table 6.

In addition to motor design optimization, optimal control 
strategies have also been implemented to improve the opera-
tion of EV motors. Zhao et al. (2018) proposed a sliding 

mode vector control system for collaborative optimization 
of an axial flux PM synchronous motor for an EV. He et al. 
(2022b) proposed an energy recovery strategy based on 
braking safety and efficient recovery to increase the energy 
recovery rate and reduce braking distance. They also pro-
posed a torque optimization strategy to minimize the energy 
loss of the regenerative braking system and improve energy 
recovery during motor braking. Mehbodniya et al. (2022) 
optimized the energy efficiency of a three-phase induction 
motor using field-oriented control and direct torque control 
approaches. Zhai et al. (2022) developed an optimized con-
trol algorithm for the brushless DC motors of an EV.

3.3  Remaining components

The studies on EV design optimization have mostly focused 
on batteries, battery management systems, drivetrains and 

Table 6  Design optimization studies on permanent magnet synchronous motors for EV applications

Study PM type Design variables Objective functions

Sun et al. (2021) Surface-mounted Slot-pole number combination, machine 
inductance, axial length, and number of 
turns

* Minimum total energy loss over the driving 
cycle

Ahn et al. (2014) Interior The motor armature coil turns, stack length, 
operation DC voltage and final drive ratio

* Minimum charge depletion
* Minimum acceleration time from 0 to 60 

mi/h
Hawkins et al. (2014) Interior The shape and placement of the magnet bar-

riers, air slots in rotors, rotor outer surface 
profile

* Maximum efficiency
* Minimum torque ripple

Sarigiannidis et al. (2016) Compared surface- 
mounted and 
interior

PM width and angle, stator tooth width and 
length, air-gap diameter

* Minimum cost function that includes the 
mean produced electromagnetic torque, 
motor power loss, total harmonic distortion 
and torque ripple

Ma et al. (2018) Interior PM total width per pole, the width of ducts, 
the pole embrace, distance from duct bot-
tom to the shaft surface and the minimum 
distance between side magnets

* Minimum value of the torque ripple to the 
average torque

Gu et al. (2019) Surface-mounted The rated torque and speed, number of poles 
and phases, rated voltage and number of 
stator segments

* Maximum torque density
* Maximum torque ripple

Bhagubai et al. (2020) Interior The rotor radius, shaft radius, the permanent 
magnet width and length, and the stator 
tooth width and length, outer ring width and 
air-gap size

* Maximum efficiency
* Maximum output torque

You (2020) Interior The angle between the V-shaped permanent 
magnets and the rib thickness of the rotor

* Maximum average torque
* Minimum total harmonic distortion of the 

back electromotive force
Lee and Lim (2021) Interior Stator inner and outer diameters, air-gap and 

stack lengths, the number of poles and PM 
remanence

* Maximum torque density
* Maximum efficiency
* Minimum torque ripple

Wu et al. (2021) Interior The outer diameter, the motor length, magnet 
thickness and width and air-gap length

* Maximum efficiency
* Minimum weight

Zhu et al. (2021b) Interior The cooling structural parameters * Minimum steady-state temperature rise of 
the motor

Zhu et al. (2022) Interior The slot depth and width, the angle between 
two slots

* Minimum orders of electromagnetic force
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motors. However, there have also been design and optimiza-
tion studies on other components such as the body, chassis, 
suspension system, and tires.

3.3.1  Body and chassis

Liu et al. (2013) performed a lightweight design of a car-
bon twill weave fabric composite body structure of an EV. 
They found that using the carbon twill weave fabric com-
posite could achieve a 28% weight reduction in the body 
compared to its predecessor made of glass fiber reinforced 
plastics. Gao et  al. (2018) performed a multi-objective 
reliability-based optimization of the front body of an EV, 
where uncertainties in the geometric parameters of the front 
body components were taken into account. The thicknesses 
of nine components on the front body were optimized for 
maximum energy absorption and minimum peak crash force 
under full frontal impact, with constraints on mass and natu-
ral frequency. Li et al. (2019c) performed a lightweight and 
crashworthiness design of EVs using a six-sigma robust 
design optimization approach. They optimized the mate-
rial and thickness of various components, including front 
longitudinal and anti-collusion beams, sub-frame front, rear 
and anti-collision beams, and the crash box, for minimum 
weight and minimum peak acceleration at the left rocker 
in the B-pillar under frontal impact. Li et al. (2021b) per-
formed a multi-objective optimization design of the B-pillar 
and rocker subsystems of an EV to improve its side crash 
performance. The material and thickness of the reinforcing 
panel and inner panel of the B-pillar, as well as the mate-
rial and thickness of the inner panel and outer panel of the 
rocker, were optimized for minimum structural mass and 
maximum mean crash force. Chen et al. (2022d) optimized 
the body frame structure of an EV using a multi-load case 
multi-objective topology optimization approach based on the 
body structure performance, considering the battery layout 
and its mass distribution. The equivalent static load method 
was used to integrate the crash load case into the optimiza-
tion framework.

Wang and Wang (2021) performed a crashworthiness-
based multi-objective integrated optimization of an EV chas-
sis frame. The thickness and shape variables of the chas-
sis frame were optimized for minimum weight, maximum 
dynamic stiffness, and minimum acceleration of the battery 
compartment. Zhang et al. (2021e) used the equivalent static 
load method to perform multi-load topology optimization on 
the body-in-white of the EV. They found that, compared to 
traditional single-load topology optimization, the multi-load 
topology optimization could make the optimization scheme 
more targeted while taking full consideration of vehicle 
body performance. Roper and Kim (2022) used a compo-
nent-existence approach to perform integrated topology and 
packaging optimization for an EV at the conceptual level. 

They compared the performance of the integrated topology 
and packaging optimization results to those of the equiva-
lent topology-only problems and found that the compliance 
difference was less than 10% despite the addition of various 
complex integration requirements such as multiple geom-
etries and packaging symmetry.

3.3.2  Suspension system and tire

Hsu et al. (2010) optimized the dynamic properties of the 
MacPherson front suspension and leaf spring rear suspen-
sion of an EV. They first obtained the dynamic properties of 
a vehicle with a gasoline engine and used them as baseline 
values. The diameter of the front stabilizer bar, the stiff-
ness of the coil spring, and the thickness of the rear leaf 
spring were optimized for the minimum change of the lateral 
acceleration, roll angle, and yaw rate of the vehicle between 
baseline vehicle and EV. Li et al. (2019d) performed a multi-
objective optimization of the active suspension of an EV to 
solve the negative vibration issues emerging from in-wheel-
motor in EVs. The stiffness and damping in the suspension 
system, as well as the weight matrices in the liner quadratic 
Gaussian controller, were optimized to minimize the unbal-
anced electromagnetic excitation and vibration.

Feng et al. (2020) used the highway safety research insti-
tute tire model and developed two methods for estimating the 
road tire friction coefficient of a four-wheel drive EV using 
a moving optimal estimation strategy. Huang et al. (2022) 
performed uncertainty-based optimization of the tire/road 
structure-borne (TRS) noise of a pure EV using the interval 
analysis method. The pressures of the front and rear tires, 
the stiffness values of the subframe-body bushing, control 
arm bushing, and suspension spring for the front and rear 
systems, and the damping values of the front and rear shock 
absorbers were optimized. These design variables were 
taken as uncertain. The sound quality annoyance of TRS 
noise was considered the optimization objective, while the 
riding comfort was taken as the constraint condition. Wang 
et al. (2020c) designed a new particle filter to realize online 
identification of an unknown tire model. They considered the 
uncertainties in the tire model and road surface disturbances 
and performed optimal coordinated control combining active 
rear-wheel steering and direct yaw moment control.

3.4  Summary

Section 3 covers research on optimized design for other main 
components of EVs, including powertrain, motor, body, 
chassis, suspension system, and tires. Powertrain design 
optimization includes powertrain configuration optimization, 
powertrain parameter optimization, and control system opti-
mization. In the existing studies, configuration optimization, 
parameter optimization, and control system optimization are 
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performed separately, therefore sub-optimal designs are high 
likely obtained. Future research should focus on simultane-
ous optimization of configuration along with size and con-
trol parameters exploration to address the issue.

Common types of electric motors used in EVs include 
series DC motors, brushless DC motors, switched reluctance 
motors, induction motors (or asynchronous motors), and per-
manent magnet synchronous motors, with permanent magnet 
motors being the most widely used due to their wide speed 
range, high power, and high efficiency. The drawbacks of 
permanent magnet motors include high-cost magnet mate-
rial and diminishing the effect of stator and rotor material 
losses on the efficiency and fault tolerance. Future research 
should focus on minimization of stator and rotor material 
losses to optimize the efficiency and reliability of permanent 
magnet motors.

Optimization research have also been conducted on other 
areas such as body, chassis, suspension system, and tires. 
Body and chassis optimization studies comprise material, 
thickness, and shape optimization, and recent studies focus 
on multi-objective reliability-based design optimization 
under dynamic loading. Suspension system and tire design 
studies focus on optimizing the dynamic properties of the 
suspension system, and recent studies focus on uncertainty-
based optimization. Future research is expected to leverage 
artificial intelligence and machine learning techniques on 
design optimization of these components. Table 7 is a table 
showing the design variables, constraints, and objective 
functions of the optimization problem in Sect. 3.

4  EV management optimization

In the context of EV development and deployment, apart 
from the components that are part of the vehicle, such as sus-
pension, Battery, motors, etc. the charging ecosystem also 
influences the performance to an extent that the manage-
ment options reflect in government EV policy decisions. An 

Table 7  Design variables, constraints, and objective functions for optimization problem in Sect. 3

Section Design variables Constraints Objective functions

3.1.1 Powertrain architecture variables, driving 
modes

Number of clutches, packaging feasibility, 
battery state of charge

Fuel consumption

3.1.2 Size and types of the components, vehicle 
weight, transmission ratios, drive motor 
parameters

Vehicle maximum speed, climbing capabil-
ity, acceleration time, driving range, 
gradeability

Total cost, fuel consumption, performance, 
driving range, acceleration time, battery 
lifespan, performance degradation, sys-
tem durability, required torque

3.1.3 Engine torque, engine speed Required power, comfort level Drivetrain efficiency, fuel consumption, 
emission

3.2 Motor geometry, number of poles, rated 
torque and speed

Coil temperature, output torque, allowable 
current density, power factor, rotor speed, 
temperature rise

Stator and coil temperature, output torque, 
motor power loss, torque ripple, effi-
ciency, acceleration time, torque density, 
motor weight and volume

3.3.1 Material, thickness and shape of body 
components,

Natural frequency, dynamic stiffness, pack-
aging symmetry

Energy consumption, specific energy 
absorption, peak crush force, weight, 
peak acceleration

3.3.2 Stiffness and damping in the suspension 
system, pressure of tires

Driving comfort, road handling, stability Energy consumption, tire/road structure-
borne noise, weight

Fig. 12  Stakeholders in EV management
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overview of the stakeholders in EV management is provided 
in Fig. 12. It shows the energy flow from the renewable 
energy sources and power exchange between power grid, 
charging station and EV fleet. Interoperability of these enti-
ties is essential for an optimal EV management framework.

In this section, we review the literature on the optimi-
zation of management techniques such as charging station 
management which includes optimal infrastructural deci-
sions, grid management takes care of the grid instability 
arising from multiple power sources and fleet management 
which includes optimal scheduling, dispatch and autono-
mous fleet management. The electric vehicle charging eco-
system management is presented in Fig. 13.

4.1  EV charging station

4.1.1  Charging station management and optimization

Charging station management involves the efficient opera-
tion of charging stations and the strategies that help to maxi-
mize the use of charging infrastructure to meet the growing 
demand for EV. Effective management of charging stations 
is necessary to ensure that consumers and fleets are able 
to charge their vehicles efficiently. This involves designing 
charging stations that can accommodate different types of 
EVs and charging speeds, and equipping them with intel-
ligent charging infrastructure that can monitor charging 
activity, manage power distribution, and optimize charging 
schedules.

Rogge et al. (2018) developed a solution strategy that 
addresses the challenges of scheduling electric buses, fleet 
configuration, and charging infrastructure optimization. The 
strategy aims to reduce the total cost of operation, which 
includes the cost of the vehicle, the cost of the charger, the 
cost of operation, and the cost of energy, utilizing GA and a 
mixed integer linear programming formulation. Yang et al. 

(2019b) proposed a data-driven strategy to improve the cur-
rent charging station configuration, considering government 
planning constraints such as quantity, overflow, and usage of 
charging stations. The ET trajectory dataset, POIs, station 
data, and road network data are four data sources that can be 
used to determine the regularity of urban charging behavior. 
Kang et al. (2016) presented an integrated decision-making 
framework that employs a multidisciplinary optimization 
model to assess the profitability of a cooperative business 
model. Li et al. (2016) proposed a heuristic based on GA to 
solve a multi-period, multi-path refueling location model, 
which determines the cost-effective station rollout method 
on both spatial and temporal dimensions, capturing the 
dynamics of the network’s topological structure. The opti-
mum design for an electric vehicle charging station (EVCS) 
is provided in this study by Hafez and Bhattacharya (2017) 
with the aim of reducing lifecycle costs while accounting for 
environmental emissions.

EV charging stations are necessary, in order to allow 
electric vehicles to be fully charged during its travels. 
Since charging EVs is a time-consuming process, It is also 
essential to make sure parking spaces and post-charging 
areas are available and secure to ensure all customers can 
charge their vehicles. There is a need to look at which 
parking issues EV charging stations deal with. He et al. 
(2018) developed an optimization model for the layout 
of a charging station using transportation planning the-
ory, utilizing urban parking as a base and basing it on the 
compatibility with construction cost and user's interest. 
Zhang and Li (2015) focus on the daytime plug-in electric 
vehicle charging scenario in parking lots close to com-
mercial establishments, where the majority of vehicles 
have extended parking times. The best pricing approach 
is determined using a two-stage approximate dynamic 
programming framework that takes into account both 
long-term estimation from historical data and expected 

Fig. 13  Overview of electric 
vehicle charging ecosystem
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short-term future information. The centralized electric 
vehicle (EV) recharge scheduling system for parking lots 
that Kuran et al. (2015) suggested in this study is based 
on a realistic vehicle mobility/parking pattern and is tar-
geted at specific parking lots. Regarding two objective 
functions, the authors evaluate the performance of the 
suggested system in comparison to two well-known basic 
scheduling mechanisms, first come, first served and ear-
liest deadline first: (1) maximizing parking lot revenue 
overall and (2) maximizing the total number of EVs meet-
ing requirements.

4.1.2  Uncertainty management in EV charging 
optimization

Uncertainties in operational parameters of an EV and the 
charging station affect the performance and need to be 
addressed in the optimization formulation. Bi et al. (2021) 
suggested using a two-stage stochastic optimization model 
to jointly optimize the distribution of EV flows and the 
placement of chargers to reduce the predicted total jour-
ney time for EVs under stochastic traffic conditions. The 
model determines the sufficiency of charging resources 
by statistically predicting a lower bound for the number of 
chargers to allocate, which helps to avoid overinvesting in 
charging resources. Bagherzadeh et al. (2020) proposed the 
long-term durable profit for charging station (DPCS) algo-
rithm, which uses a stochastic optimization framework to 
increase the long-term profit of the charging station owner. 
The charging station owner can choose the electricity sales 
price, vehicle admittance, and number of operational pumps 
at each time interval using the DPCS algorithm. Rasouli 
et al. (2019) presented a new model based on the Monte 
Carlo simulation method for estimating the uncertainty of 
EV charging station load in a day-ahead operation optimi-
zation of a smart microgrid. The uncertain factors consid-
ered include battery capacity, type of EVs, state of charge, 
charging power level, and response to energy price changes. 
Quddus et al. (2021) offered a unique disruption prevention 
model to construct and operate a network of EV charging 
stations under unknown power demand. Their model takes 
into account both long-term expansion decisions and short-
term operating decisions and includes a nonlinear term to 
prevent the evolution of excessive temperature on a power 
line under various external conditions. Wu et al. (2022) pre-
sented an ideal parameter forecasting technique to increase 
the forecasting precision of EV charging demand in micro-
grids. Their approach changes the ideal parameter values of 
probability distributions within fuzzy sets based on feedback 
from EVs that have arrived in the microgrid and computes 
average values of several sample data to increase the stability 
of forecasting outcomes.

4.1.3  Charging station location optimization

The strategic location of charging stations is crucial to 
minimize infrastructure investment while optimally fulfill-
ing the charging demand of an area. Awasthi et al. (2017) 
proposed a hybrid algorithm based on GA and an upgraded 
from of traditional PSO to determine the best charging sta-
tion location with minimal impact on the utility grid. The 
algorithm functionality is improved, and solution quality is 
increased by re-optimizing the received sub-optimal solu-
tion (site and station size) using PSO. Yang et al. (2017) 
provided a data-driven optimization approach for the allo-
cation of chargers for battery electric vehicle (BEV) taxis 
throughout a city with the aim of minimizing infrastructure 
investment. A queueing model is used to assess the likeli-
hood of BEV taxis being charged at their dwell locations 
while considering charging congestion. Huang and Zhou 
(2015) proposed an integer programming-based optimal 
methodology for workplace charging methods that specifi-
cally addresses various eligible levels of charging technol-
ogy and employee demographic distributions to meet all 
charging demand. The optimization model aims to reduce 
the lifespan cost of machinery, installations, and operations. 
Baouche et al. (2014) proposed a method for determining 
the optimal placement of charging stations by modifying a 
linear model based on two traditional location models. The 
model focuses on minimizing the total journey cost from 
demand zones to the charging station site, along with the 
server investment cost, rather than restricting the charging 
stations to designated demand zones. To address the charg-
ing station location problem, Kong et al. (2017) proposed 
a three-layered system model of fast charging stations. The 
first layer identifies the locations of the charging stations, 
the second layer uses a queuing model and introduces a 
resource allocation framework to optimize grid resources, 
and the third layer considers the battery charging dynamics 
and develops a station policy to maximize profits by set-
ting maximum charging levels. Liu et al. (2012) proposed 
an adaptive PSO algorithm to determine the optimal location 
and scale of EV charging stations, considering geographic 
information, construction cost, and running cost. Xi et al. 
(2013) created a simulation–optimization model that iden-
tifies the best locations for charging stations for privately 
owned EVs, and demonstrates that using both level one and 
level two chargers is preferable to using solely level two 
chargers. Erdinc et al. (2018) proposed a novel idea that 
considers the sizing and positioning of wind and solar-based 
renewable distributed generation units, various types of EV 
charging stations servicing various end-user groups, and 
energy storage system (ESS) units for distribution systems. 
Vazifeh et al. (2019) developed an innovative data-driven 
strategy to optimize the placement of EV charging stations, 
aiming to cover the whole demand region while minimizing 
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drivers' total excess driving distance to reach charging sta-
tions, the associated energy overhead, and the number of 
charging stations.

4.2  Grid management

Grid management is a strategy for managing the supply and 
demand of electricity in electrical systems. It is necessary for 
charging stations to deliver reliable and economical supply 
in response to EV charging demand. Grid management is 
a system management approach that takes into account the 
variability of electricity supply or demand.

4.2.1  Grid stability management

In their description of the fundamental operations of an 
electric car charging service provider, Sundstrom et al. 
(2011) focused on optimization issues related to EV charg-
ing service providers and demonstrate a novel approach that 
considers voltage and power grid limits in the planning of 
EV charging. The technique creates a unique charging strat-
egy for each car, prevents grid congestion, and meets the 
demands of vehicle owners. Hashim et al. (2021) proposed a 
priority-based vehicle-to-grid scheduling to reduce grid load 
variance, optimizing the quantity of charging/discharging 
power based on the state of charge of the EV battery. Tan 
et al. (2016) also presented an ideal vehicle-to-grid schedul-
ing that utilizes GA to reduce power grid load variance by 
allowing grid-to-vehicle charging of EVs when the actual 
power grid loading is lower than the target loading and con-
ducting vehicle-to-grid charging when the actual power grid 
loading is higher than the target loading.

Grid management becomes more crucial for charging 
stations, particularly those using renewable energy sources 
due to the fluctuation in their output. Several studies have 
focused on managing this instability. Petrusic et al. (2020) 
proposed a technique to simultaneously optimize the charg-
ing/discharging of ESSs and EV charging power of a charg-
ing station with renewable energy source. Sun et al. (2021) 
proposed the optimization of the capacity and charging strat-
egy of a charging station that combines wind and photo-
voltaic (PV) power while considering costs and emissions 
as objective functions. Wahedi et al. (2022) assessed the 
economic viability of a novel charging station that includes 
a PV system, wind turbine, converter, electrolyzer, backup 
bio generator, and H2 and NH3 fuel cells hybridized with 
electrochemical and chemical storage facilities.

4.2.2  Renewable energy management

EVs offer eco-friendliness as an advantage, but it's essential 
to note that this eco-friendliness depends on the greenness of 
the power source that charges them. Nonetheless, renewable 

energy generation faces the challenge of variability in power 
production. Therefore, there are studies to integrate the uncer-
tainties of EV electricity use and renewable energy genera-
tion. Rezaei et al. (2020) simulated what changes each would 
bring to the model when EV demand uncertainty, renewable 
energy generation uncertainty, and market price uncertainty 
were considered. Poursmaeil et al. (2021) propose an optimal 
scheduling model that considers both uncertainty of renewable 
energy generation and market price uncertainty.

Of the different renewable sources, PV power generation is 
one of the most actively investigated and promising areas. As 
a result, numerous research on the grid management of charg-
ing stations using PV power generation has been carried out. 
Chaudhari et al. (2018) optimized the charging/discharging of 
a charging station with ESS, PV, and grid, taking into consid-
eration changing wholesale power prices, dynamic electric-
ity consumption, and ESS degradation. Dai et al. (2019) also 
explored the optimization charging stations that encompass 
ESS, PV, and grid, taking into account the size of the ESS and 
PV, as well as charging and discharging strategies. Eldeeb et al. 
(2018) suggested multi-objective optimization, which takes 
into account both the lifetime of the ESS and the PV charging 
station's profit. Mohamed et al. (2020) proposed the optimiza-
tion of power-flow regulation in a charging station integrating 
PV and grid, with an objective function of the variation in 
DC-bus voltage during EV charging, in order to lessen the 
risks associated with solar energy production.

4.2.3  V2G and G2V energy transfer management

To address the unstable electricity demand of EVs, some 
grid management strategies such as vehicle to grid (V2G) 
and grid to vehicle (G2V) involve integrating the demand 
with the electricity of commercial buildings. While this 
integration can make the system more complex, it can also 
increase the stability and cost-effectiveness of the electrical 
system. Quddus et al. (2018) proposed optimizing a sys-
tem that combines office buildings, charging stations, and 
the grid in the presence of uncertain power demand. Yang 
et al. (2019b) suggested optimizing a system that combines 
grids for commercial buildings and wind power. Yan et al. 
(2019) proposed optimizing the charge/discharge strategy in 
a charging station that combines PV, grid, and commercial 
building, where the EV charging price and vehicle-to-grid 
bonus price are controlled over time.

4.3  Fleet management

4.3.1  Fleet management of shared autonomous electric 
vehicles

Fleet management is an important aspect of shared 
autonomous electric vehicles (SAEVs), which combines 



A survey on design optimization of battery electric vehicle components, systems, and management  Page 25 of 34    27 

autonomous driving technology and car-sharing services 
while producing zero emissions. As SAEVs are expected 
to become integral parts of transportation systems in the 
near future, managing an SAEV fleet requires establish-
ing connections between fleet operations, charging station 
operations, powertrain requirements, consumer demand, and 
company profit. Kang et al. (2016) presented a multidis-
ciplinary framework to quantitatively analyze the effect of 
government public policies on the EV market by modeling 
the decisions of government, manufacturers, charging station 
operators, and consumers. They examined three business 
model scenarios for the EV markets in the cities of Ann 
Arbor and Beijing that have different stakeholder character-
istics. They concluded that their quantitative analysis could 
help policy makers examine the impact of subsidy budget 
levels and policies while considering all stakeholders' inter-
ests. Kang et al. (2017) presented a system design optimiza-
tion framework that integrates four subsystem problems: (1) 
fleet size and assignment schedule, (2) number and locations 
of charging stations, (3) vehicle powertrain requirements, 
and (4) service fees. They found that the developed decision 
framework for autonomous fleet assignment, charging sta-
tion location, and powertrain design can result in low wait 
time for customers and a stable service under different mar-
ket simulations. They also compared an autonomous vehicle 
service that uses EVs to one that uses gasoline engines, and 
provided practical insights for service system decision mak-
ers. Kim et al. (2022) proposed a deep learning-based algo-
rithm that can instantly predict the optimal solution to idle 
vehicle relocation problems under various traffic conditions. 
They validated their proposed idle vehicle relocation model 
by applying it to the optimization of an SAEV system. They 
showed that their proposed strategy can significantly reduce 
operation costs and wait times for on-demand services.

Lee et al. (2019) proposed a reliability-based design for 
market systems (RBDMS) framework by integrating reliabil-
ity-based design optimization (RBDO) and design for mar-
ket system approaches to find the optimal target reliability 
that maximizes company profit. They applied the proposed 
framework to EV fleet design problems to explore the effect 
of the target reliability on company profit and engineering 
performances of EVs. Lee et al. (2020) considered uncer-
tainties in an SAEV system and applied RBDO to the design 
of the SAEV fleet system. They compared the optimization 
results of various wait time constraints and probabilities of 
failure and provided observations on applying RBDO to the 
design of an SAEV system. Lee et al. (2022) presented a 
design framework for a shared autonomous fuel cell electric 
vehicle (SAFCEV) based on a proton-exchange membrane 
fuel cell model. They optimized a shared autonomous bat-
tery electric vehicle (SABEV) and an SAFCEV to minimize 
the total cost while satisfying the customer wait time con-
straint. They found that the SAFCEV system had a 9.8% 

smaller fleet size and 108.8% larger driving range compared 
to the SABEV system. They also found that a hybrid fleet 
system that simultaneously operates SABEV and SAFCEV 
could lead to a total cost reduction of 0.8% compared to the 
case when only SAFCEV is operated.

4.3.2  Optimization in dispatch management of EV fleet

In the public transportation domain, efficient management of 
EV fleets is essential to maximize its utilization while mini-
mizing the infrastructure development cost and operational 
cost for given input characteristics of each EV. EV dispatch 
planning depends on various parameters such as number of 
EVs, their battery capacity, weather, route, driving condi-
tions among others.

Brooks et  al. (2010) discussed the prerequisites for 
demand dispatch, including communication and control over 
the internet, as well as fast reaction times for load-based 
auxiliary services. Smart charging is cited as an example of 
demand dispatch as it relates to plug-in EVs. To account for 
the unpredictability of wind turbines and plug-in electric 
vehicles, Zhao et al. (2012) presented an economic dispatch 
model that uses PSO and interior point techniques. Gend-
reau et al. (2006) proposed neighborhood search heuristics 
to improve the scheduled routes of vehicles in a situation 
where new requests with pick-up and delivery locations are 
made in real-time. They investigate new solutions within this 
framework using a neighborhood structure built on ejection 
chains. In a multigraph where multiple travel possibilities 
are represented by parallel arcs between pairs of vertices 
based on factors such as time, cost, and distance, Lai et al. 
(2016) studied a time-constrained heterogeneous vehicle 
routing problem. They present the problem as a mixed-inte-
ger linear programming model and devise a tabu search heu-
ristic that effectively handles the concurrent arcs' impact on 
computation. With a mixed fleet of electric and diesel buses 
and a limited number of chargers, Alvo et al. (2021) investi-
gated how to efficiently manage a bus dispatch operation at a 
public transportation terminal. They reformulated the prob-
lem into two subproblems: a master problem that allocates 
bus travel itineraries and a satellite problem that sequences 
charging tasks. This problem is described as an extension of 
the vehicle scheduling problem, and the branch-and-bound 
tree is dynamically modified using the exact decomposition 
approach to eliminate bus trip plans that would result in an 
impractical bus charging procedure. Zhao et al. (2012) pro-
posed a bi-objective programming approach using NSGA II 
to solve a vehicle routing problem with a mixed fleet of con-
ventional and electric cars, with the aim of reducing opera-
tional costs and time penalty costs. Reinforcement learning 
(RL), a model-free and online learning technique, can cap-
ture a variety of uncertainty through repeated encounters 
with the environment and instantly adjust to different state 
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situations. Qiu et al. (2023) summarizes how single-agent 
RL and multi-agent RL are two of the most widely used RL 
algorithms and how they can be used to solve a variety of 
EV dispatch issues.

4.4  Summary

Charging station management involves ensuring the effec-
tive operation of charging stations and maximizing the uti-
lization of the charging infrastructure while minimizing the 
total operational cost. This includes addressing issues such 
as selecting the optimal location for charging stations that 
can meet the area's charging demand with the least amount 
of infrastructure investment, and optimizing the operation of 
charging stations to minimize the total operating cost. Need 
of optimal parking layout for EV charging stations is also 
discussed. The impact of uncertainty in EV operation on 
charging station management was also discussed. EV charg-
ing places a strain on the power grid and may pose poten-
tial threats to the power grid reliability by overloading grid 
equipment and disturbing grid voltage stability. Strategies 
to stabilize and manage the grid were discussed to reduce 
the grid congestion. To deal with power output uncertainty 
from renewable energy sources, charging strategies were 
explored, including the use of ESSs and integration of vari-
ous renewable energy sources into charging stations along 
with their economic viability. Fleet management techniques 
were also reviewed to minimize infrastructure and opera-
tional costs, and optimization algorithms and heuristics were 
discussed to solve problems such as dispatch and schedul-
ing. Operation problems of mixed fleet routing were also 
discussed. In recent years, the management of autonomous 
fleets, which involves various entities of an EV operation, 
has gained traction. An extensive review of reliability-based 
design of shared autonomous electric vehicles to minimize 
the total cost was also discussed.

5  Conclusion

Current challenges related to climate change are driving 
the need for more efficient EVs. Although significant pro-
gress has been made in EV technology at both the compo-
nent and system level, there is still a gap in comprehensive 
surveys of optimization studies related to EVs. To address 
this gap, the current work provides a comprehensive survey 
of optimization developments in different aspects of EV. 
The survey covers optimization of the battery, including 
thermal, electrical, and mechanical aspects. Thermal opti-
mization aims to manage heat through techniques such as 
air or liquid cooling, while electrical optimization focuses 
on managing charging with discussions on coordinated and 
uncoordinated charging and their respective advantages 

and disadvantages. Mechanical optimization focuses on 
characteristics such as light-weighting, vibration insula-
tion, and collision resistance. Future studies should focus 
on developing system frameworks that address all three 
aspects while accommodating new designs made possi-
ble by advanced techniques such as generative design or 
origami-inspired topological designs enabled by additive 
manufacturing. Such frameworks should also permit sensi-
tivity studies of battery performance with alternate materi-
als and incorporate sustainability considerations. Finally, 
while many optimization studies focus on performance, 
further research on robustness, reliability, and sustainabil-
ity is needed to justify the use of EVs.

Next, strategies for battery charging/discharging and 
battery swapping are reviewed, taking into consideration 
factors such as operation, cost, battery performance, and 
range anxiety. The use of wireless strategies to enable 
faster charging is also discussed, with optimization tech-
niques mainly focusing on topology or network optimiza-
tion using heuristics techniques. Future research should 
address uncertainties in charging ecosystem design and 
incorporate both forward and inverse prediction capabili-
ties to leverage benefits for both the grid and individual 
vehicles. Advanced machine learning techniques such as 
transfer learning can be developed to arrive at predictions 
faster, enabling almost instant alerts or guidance for charg-
ing. Additionally, future research should explore advanced 
techniques such as graph partitioning for geo-partition-
ing to better understand time series of battery usage for 
improved predictions and forecasting while accounting for 
uncertainties.

This survey also discusses optimization techniques of 
other EV components, such as motors, powertrains, tires, 
and chassis. Currently, powertrain configuration optimiza-
tion is performed separately from parameters optimization 
and control system optimization, resulting in sub-optimal 
EV designs. Future research should focus on simultaneous 
optimization of configuration along with size and control 
parameters exploration to address the issue. While batter-
ies, battery management systems, drivetrains, and motors 
have received the most attention in EV design optimization 
studies, other sections including the body, chassis, suspen-
sion system, and tires have also been the subject of design 
and optimization research.

Finally, this work presents a review of the EV ecosys-
tem, specifically the optimization of charging station, grid, 
and fleet management. Research on charging station con-
struction, charging station operation strategies, and power 
system operation strategies are discussed.
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